Journal of Molecular Neuroscience

, Volume 22, Issue 1–2, pp 75–82 | Cite as

Transcriptional activation of the human gastrin-releasing peptide receptor gene in gastrointestinal and prostatic epithelial cancer cells

Receptors

Abstract

The mammalian gastrin-releasing peptide receptor (GRP-R) belongs to the superfamily of G protein-coupled receptors and mediates actions of the regulatory GRP and bombesin, the amphibian homolog of GRP. Owing to its frequent ectopic expression in some epithelial human malignancies, such as cancers of the colon, lung, and prostate, ligand-specific receptor activation may initiate intracellular signals of cell proliferation, differentiation and migration in this context. Because the underlying molecular mechanisms of aberrant human GRP-R (hGRP-R) expression in tumorigenesis remain unknown, we examined in this study the transcriptional activation of hGRP-R in gastrointestinal and prostate cancer cells, which natively express functional hGRP-R. Using various hGRP-R promoter mutants cloned into a luciferase reporter plasmid, transient transfection studies demonstrated robust transcriptional activation in gastrointestinal and prostate cancer cells. Although our study revealed distinct patterns of transcriptional hGRP-R activation in gastrointestinal and prostate cancer cells, genomic sequences between 97 and 247 bp upstream of the major RNA initiation site appear to be of particular significance for basal transcriptional hGRP-R activation. Based on this study, future examination of transcription factor interaction with the hGRP-R promoter will be important to identify molecular mechanisms of hGRP-R regulation relevant in human cancers that express functional receptor sites.

Index Entries

Regulatory peptide bombesin gene regulation GRP-R cancer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Centers for Disease Control and Prevention (2002) Recent trends in mortality rates for four major cancers, by sex and race/ethnicity—United States, 1990–1998. MMWR Morb. Mortal. Wkly. Rep. 51, 49–53.Google Scholar
  2. Abrahamsson, P. A. (1999) Neuroendocrine cells in tumour growth of the prostate. Endocr. Related Cancer 6, 503–519.CrossRefGoogle Scholar
  3. Albers, H. E., Liou, S. Y., Stopa, E. G., and Zoeller, R. T. (1991) Interaction of colocalized neuropeptides: functional significance in the circadian timing system. J. Neurosci. 11, 846–851.PubMedGoogle Scholar
  4. Aprikian, A. G., Han, K., Chevalier, S., Bazinet, M., and Viallet, J. (1996) Bombesin specifically induces intracellular calcium mobilization via gastrin-releasing peptide receptors in human prostate cancer cells. J. Mol. Endocrinol. 16, 297–306.PubMedGoogle Scholar
  5. Battey, J. F., Way, J. M., Corjay, M. H., Shapira, H., Kusano, K., Harkins, R., et al. (1991) Molecular cloning of the bombesin/gastrin-releasing peptide receptor from Swiss 3T3 cells. Proc. Natl. Acad. Sci. USA 88, 395–399.PubMedCrossRefGoogle Scholar
  6. Bokar, J. A., Roesler, W. J., Vandenbark, G. R., Kaetzel, D. M., Hanson, R. W., and Nilson, J. H. (1988) Characterization of the cAMP responsive elements from the genes for the alpha-subunit of glycoprotein hormones and phosphoenolpyruvate carboxykinase (GTP). Conserved features of nuclear protein binding between tissues and species. J. Biol. Chem. 263, 19740–19747.PubMedGoogle Scholar
  7. Bonkhoff, H. (2001) Neuroendocrine differentiation in human prostate cancer. Morphogenesis, proliferation and androgen receptor status. Ann. Oncol. 12, S141-S144.PubMedCrossRefGoogle Scholar
  8. Brown, M. R., Carver, K., and Fisher, L. A. (1988) Bombesin: central nervous system actions to affect the autonomic nervous system. Ann. NY Acad. Sci. 547, 174–182.PubMedCrossRefGoogle Scholar
  9. Carroll, R. E., Ostrovskiy, D., Lee, S., Danilkovich, A., and Benya, R. V. (2000) Characterization of gastrin-releasing peptide and its receptor aberrantly expressed by human colon cancer cell lines. Mol. Pharmacol. 58, 601–607.PubMedGoogle Scholar
  10. Cassano, G., Resta, N., Gasparre, G., Lippe, C., and Guanti, G. (2001) The proliferative response of HT-29 human colon adenocarcinoma cells to bombesin-like peptides. Cancer Lett. 172, 151–157.PubMedCrossRefGoogle Scholar
  11. Corjay, M. H., Dobrzanski, D. J., Way, J. M., Viallet, J., Shapira, H., Worland, P., et al. (1991) Two distinct bombesin receptor subtypes are expressed and functional in human lung carcinoma cells. J. Biol. Chem. 266, 18771–18779.PubMedGoogle Scholar
  12. di Sant’Agnese, P. A. (2001) Neuroendocrine differentiation in prostatic carcinoma: an pdate on recent developments. Ann. Oncol. 12, S135-S140.PubMedCrossRefGoogle Scholar
  13. Erspamer, V., Erspamer, G. F., Inselvini, M., and Negri, L. (1972) Occurrence of bombesin and alytesin in extracts of the skin of three European discoglossid frogs and pharmacological actions of bombesin on extravascular smooth muscle. Br. J. Pharmacol. 45, 333–348.PubMedGoogle Scholar
  14. Greenlee, R. T., Murray, T., Bolden, S., and Wingo, P. A. (2000) Cancer statistics, 2000. CA Cancer J. Clin. 50, 7–33.PubMedCrossRefGoogle Scholar
  15. Jensen, J. A., Carroll, R. E., and Benya, R. V. (2001) The case for gastrin-releasing peptide acting as a morphogen when it and its receptor are aberrantly expressed in cancer. Peptides 22, 689–699.PubMedCrossRefGoogle Scholar
  16. Kim, K. S., Park, D. H., Wessel, T. C., Song, B., Wagner, J. A., and Joh, T. H. (1993) A dual role for the cAMP-dependent protein kinase in tyrosine hydroxylase gene expression. Proc. Natl. Acad. Sci. USA 90, 3471–3475.PubMedCrossRefGoogle Scholar
  17. Kroog, G. S., Jensen, R. T., and Battey, J. F. (1995) Mammalian bombesin receptors. Med. Res. Rev. 15, 389–417.PubMedCrossRefGoogle Scholar
  18. Lewis, E. J., Tank, A. W., Weiner, N., and Chikaraishi, D. M. (1983) Regulation of tyrosine hydroxylase mRNA by glucocorticoid and cyclic AMP in a rat pheochromocytoma cell line. Isolation of a cDNA clone for tyrosine hydroxylase mRNA. J. Biol. Chem. 258, 14632–14637.PubMedGoogle Scholar
  19. McCoy, J. G. and Avery, D. D. (1990) Bombesin: potential integrative peptide for feeding and satiety. Peptides 11, 595–607.PubMedCrossRefGoogle Scholar
  20. Montminy, M. R., Sevarino, K. A., Wagner, J. A., Mandel, G., and Goodman, R. H. (1986) Identification of a cyclic-AMP-responsive element within the rat somatostatin gene. Proc. Natl. Acad. Sci. USA 83, 6682–6686.PubMedCrossRefGoogle Scholar
  21. Pandol, S. J., Schoeffield, M. S., Sachs, G., and Muallem, S. (1985) Role of free cytosolic calcium in secretagogue-stimulated amylase release from dispersed acini from guinea pig pancreas. J. Biol. Chem. 260, 10081–10086.PubMedGoogle Scholar
  22. Qu, X., Xiao, D., and Weber, H. C. (2002) Human gastrin-releasing peptide receptor mediates sustained CREB phosphorylation and transactivation in HuTu 80 duodenal cancer cells. FEBS Lett. 527, 109–113.PubMedCrossRefGoogle Scholar
  23. Qu, X., Xiao, D., and Weber, H. C. (2003a) Protein kinase A (PKA)-induced GRP-receptor (hGRP-R) regulation requires transcription factor binding at two distinct CRE sites. Gastroenterology 124, A9.Google Scholar
  24. Qu, X., Xiao, D., and Weber, H. C. (2003b) Biologic relevance of mammalian bombesin-like peptides and their receptors in human malignancies. Curr. Opin. Endocrinol. Diabetes 10, 60–71.CrossRefGoogle Scholar
  25. Reile, H., Armatis, P. E., and Schally, A. V. (1994) Characterization of high-affinity receptors for bombesin/gastrin releasing peptide on the human prostate cancer cell lines PC-3 and DU-145: internalization of receptor bound 125I-(Tyr4) bombesin by tumor cells. Prostate 25, 29–38.PubMedCrossRefGoogle Scholar
  26. Rozengurt, E. (1998) Signal transduction pathways in the mitogenic response to G protein-coupled neuropeptide receptor agonists. J. Cell. Physiol. 177, 507–517.PubMedCrossRefGoogle Scholar
  27. Rozengurt, E. (2002) Neuropeptides as growth factors for normal and cancerous cells. Trends Endocrinol. Metab. 13, 128–134.PubMedCrossRefGoogle Scholar
  28. Schug, J. and Overton, G.C. (1997) TESS: Transcription Element Search Software on the WWW. Technical Report CBIL-TR-1997-1001-v0.0, Computational Biology and Informatics Laboratory, http://www.cbil.upenn.edu/tess. School of Medicine, University of Pennsylvania, 1997.Google Scholar
  29. Severi, C., Jensen, R. T., Erspamer, V., D’Arpino, L., Coy, D. H., Torsoli, A., and Delle Fave, G. (1991) Different receptors mediate the action of bombesin-related peptides on gastric smooth muscle cells. Am. J. Physiol. 260, G683-G690.PubMedGoogle Scholar
  30. Shumyatsky, G. P., Tsvetkov, E., Malleret, G., Vronskaya, S., Hatton, M., Hampton, L., et al. (2002) Identification of a signaling network in lateral nucleus of amygdala important for inhibiting memory specifically related to learned fear. Cell 111, 905–918.PubMedCrossRefGoogle Scholar
  31. Spindel, E. R., Giladi, E., Brehm, P., Goodman, R. H., and Segerson, T. P. (1990) Cloning and functional characterization of a complementary DNA encoding the murine fibroblast bombesin/gastrin-releasing peptide receptor. Mol. Endocrinol. 4, 1956–1963.PubMedCrossRefGoogle Scholar
  32. Sun, B., Halmos, G., Schally, A. V., Wang, X., and Martinez, M. (2000) Presence of receptors for bombesin/gastrin-releasing peptide and mRNA for three receptor subtypes in human prostate cancers. Prostate 42, 295–303.PubMedCrossRefGoogle Scholar
  33. Sunday, M. E., Kaplan, L. M., Motoyama, E., Chin, W. W., and Spindel, E. R. (1988) Gastrin-releasing peptide (mammalian bombesin) gene expression in health and disease. Lab. Invest. 59, 5–24.PubMedGoogle Scholar
  34. Tsukada, T., Fink, J. S., Mandel, G. and Goodman, R. H. (1987) Identification of a region in the human vasoactive intestinal polypeptide gene responsible for regulation by cyclic AMP. J. Biol. Chem. 262, 8743–8747.PubMedGoogle Scholar
  35. Van Tol, E. A., Verspaget, H. W., and Lamers, C. B. (1990) Neuropeptide regulation of cell-mediated cytotoxicity against human tumor cells. Neuropeptides 16, 25–32.PubMedCrossRefGoogle Scholar
  36. Weber, H. C., Battey, J. F., and Jensen, R. T. (1997) A cyclic AMP response element (CRE) in the murine GRP-R promoter is necessary for basal transcription activity. Gastroenterology 112, A1199.Google Scholar
  37. Weber, H. C., Hampton, L. L., Jensen, R. T., and Battey, J. F. (1996) Structure and chromosomal localization of the genes for the gastrin-releasing peptide receptor, neuromedin-B receptor and the bombesin suptype 3 receptor. Regul. Peptides 64, 207.Google Scholar
  38. Weber, H. C., Jensen, R. T., and Battey, J. F. (2000) Molecular organization of the mouse gastrin-releasing peptide recpetor gene and its promoter. Gene 244, 137–149.PubMedCrossRefGoogle Scholar
  39. Williams, B. Y. and Schonbrunn, A. (1994) Bombesin receptors in a human duodenal tumor cell line: binding properties and function. Cancer Res. 54, 818–824.PubMedGoogle Scholar
  40. Xiao, D., Qu, X., and Weber, H. C. (2002) GRP receptor-mediated immediate early gene expression and transcription factor Elk-1 activation in prostate cancer cells. Regul. Peptides 109, 141–148.CrossRefGoogle Scholar
  41. Xiao, D., Qu, X., and Weber, H. C. (2003) Activation of extracellular signal regulated kinase mediates bombesin-induced mitogenic responses in prostate cancer cells. Cell. Signal. 15, 945–953.PubMedCrossRefGoogle Scholar
  42. Xiao, D., Wang, J., Hampton, L. L., and Weber, H. C. (2001) The human gastrin-releasing peptide receptor genestructure, its tissue expression and promoter. Gene 264, 95–103.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • Xiangping Qu
    • 1
  • Dongmei Xiao
    • 1
  • H. Christian Weber
    • 1
  1. 1.Section of GastroenterologyBoston University School of MedicineBoston

Personalised recommendations