Skip to main content
Log in

Novel insect control agents based on neuropeptide antagonists

The PK/PBAN family as a case study

  • Physiology And Pharmacology
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

This review describes the development of a new integrated approach to the generation of a novel type of insect neuropeptide (Np) antagonists and putative insect control agents based on conformationally constrained compounds. The new approach, termed insect Np-based antagonist insecticide (INAI), was applied to the insect pyrokinin (PK)/pheromone biosynthesis-activating Np (PBAN) family as a model and led to the discovery of a potent linear lead antagonist and several highly potent, metabolically stable backbone cyclic (BBC) conformationally constrained antagonists that were devoid of agonistic activity and inhibited sex pheromone biosynthesis in female moths in vivo. This review summarizes the above approach, briefly describes the PK/PBAN Np family, presents data on the in vivo activity of the antagonists, summarizes data on the PK/PBAN receptor, and introduces the advantages of this method for generation of Np antagonists as a basis for the design of insect control agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abernathy, R. L., Nachman, R. J., Teal, P. E. A., Yamashita, O., and Tumlinson, J. H. (1995) Pheromonotropic activity of naturally occurring pyrokinin insect neuropeptides (FXPRLamide) in Helicoverpa zea. Peptides 16, 215–219.

    Article  PubMed  CAS  Google Scholar 

  • Altstein, M. (2001) Insect neuropeptide antagonists. Biopolymers (Pept. Sci.) 60, 460–473.

    Article  CAS  Google Scholar 

  • Altstein, M., Ben-Aziz, O., Bhargava, K., Li Q., and Martins-Green, M. (2003) Histochemical localization of the PBAN receptor in the pheromone gland of Heliothis peltigera. Peptides 24, 1335–1347.

    Article  PubMed  CAS  Google Scholar 

  • Altstein, M., Ben-Aziz, O., Daniel, S., Schefler, I., Zeltser, I., and Gilon, C. (1999a) Backbone cyclic peptide antagonists, derived from the insect pheromone biosynthesis activating neuropeptide (PBAN), inhibit sex pheromone biosynthesis in moths. J. Biol. Chem. 274, 17573–17579.

    Article  PubMed  CAS  Google Scholar 

  • Altstein, M., Ben-Aziz, O., Daniel, S., Zeltser, I., and Gilon, C. (2001) Pyrokinin/PBAN radio-receptor assay: development and application for the characterization of a putative receptor from the pheromone gland of Heliothis peltigera. Peptides 22, 1379–1389.

    Article  PubMed  CAS  Google Scholar 

  • Altstein, M., Ben-Aziz, O., Gabay, T., Gazit, Y., and Dunkelblum, E. (1996a) Structure-function relationship of PBAN/MRCH, in Insect Pheromone Research: New Directions, Carde, R. T., and Minks, A. K., eds. Chapman and Hall, New York, pp. 56–63.

    Google Scholar 

  • Altstein, M., Ben-Aziz, O., Schefler, I., Zeltser, I., and Gilon, C. (2000). Advances in the application of neuropeptides in insect control. Crop Prot. 19, 547–555.

    Article  CAS  Google Scholar 

  • Altstein, M., Dunkelblum, E., Gabay, T., Ben-Aziz, O., Schafler, I., and Gazit, Y. (1995) PBAN-induced sex pheromone biosynthesis in Heliothis peltigera: Structure, dose and time-dependent analysis. Arch. Insect Biochem. Physiol. 30, 309–317.

    Article  Google Scholar 

  • Altstein, M., Dunkelblum, E., Gazit, Y., Ben Aziz, O., Gabay, T., Vogel, Z., and Barg, J. (1997) Structure-function analysis of PBAN/MRCH: A basis for antagonist design, in Modern Agriculture and the Environment, Rosen D. et al., eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 109–116.

    Google Scholar 

  • Altstein, M., Gabay, T., Ben Aziz, O., Daniel, S., Zeltser, I., and Gilon, C. (1999b) Characterization of the pheromone biosynthesis activation neuropeptide (PBAN) receptor from the pheromone gland of Heliothis peltigera. Invertebrate Neurosci. 4, 33–40.

    Article  CAS  Google Scholar 

  • Altstein, M., Gazit, Y., Ben Aziz, O., Gabay, T., Marcus, R., Vogel, Z., and Barg, J. (1996b) Induction of cuticular melanization in Spodoptera littoralis larvae by PBAN/MRCH: Development of a quantitative bioassay and structure function analysis. Arch. Insect Biochem. Physiol. 31, 355–370.

    Article  CAS  Google Scholar 

  • Becker, J. A. J., Wallace, A., Garzon, A., Ingallinella, P., Bianchi, E., Cortese, R., et al. (1999) Ligands for κ-opioid and ORL1 receptors identified from a conformationally constrained peptide combinatorial library. J. Biol. Chem. 274, 27513–27522.

    Article  PubMed  CAS  Google Scholar 

  • Choi, M. Y., Tanaka, M., Kataoka, H., Boo, K. S., and Tatsuki, S. (1998) Isolation and identification of the cDNA encoding the pheromone biosynthesis activating neuropeptide and additional neuropeptides in the oriental tobacco budworm, Helicoverpa assulta (Lepidoptera: Noctuidae). Insect Biochem. Mol. Biol. 28, 759–766.

    Article  PubMed  CAS  Google Scholar 

  • Cody, W. L., He, J. X., DePue, P. L., Waite, L. A., Leonard, D. M., Sefler, A. M., et al. (1995) Structure-activity relationships of the potent combined endothelin-A/endothelin-B receptor antagonist Ac-DDip16-Leu-Asp-Ile-Ile-Trp21: development of endothelin-B receptor selective antagonists. J. Med. Chem. 21, 2809–2819.

    Article  Google Scholar 

  • Collins, N., Flippen-Anderson, J. L., Haaseth, R. C., Deschamps, J. R., George, C., Kövér, K., and Hruby, V. J. (1996) Conformational determinants of agonist versus antagonist properties of [d-Pen2, d-Pen5]enkephalin (DPDPE) analogs at opioid receptors. Comparison of X-ray crystallographic structure, solution 1HNMR data and molecular dynamic simulations of [l-Ala3] DPDPE and [δ-Ala3]DPDPE. J. Am. Chem. Soc. 118, 2143–2152.

    Article  CAS  Google Scholar 

  • Coy, D. H., Heinz-Erian, P., Jiang, N.-Y., Sasaki, J., Taylor, J., Moreau, J.-P., et al. (1988) A novel bombesin antagonist with reduced peptide bond. J. Biol. Chem. 263, 5055–5060.

    Google Scholar 

  • Coy, D. H., Taylor, J., Jiang, N.- Y., Kim, S. H., Wang, L.-H., Huang, S. C., et al. (1989) Short chain bombesin receptor antagonists with IC50s for cellular secretion and growth approaching the picomolar region. Peptides 11, pp. 65–67.

    Google Scholar 

  • Davis, M.-T. B., Vakharia, V. N., Henry, J., Kempe, T. G., and Raina, A. K. (1992) Molecular cloning of the pheromone biosynthesis-activating neuropeptide in Helicoverpa zea. Proc. Natl. Acad. Sci. USA 89, 142–146.

    Article  PubMed  CAS  Google Scholar 

  • Devlin, J. P. (1997) High Throughput Screening: The Discovery of Bioactive Substances, Marcel Dekker, New York.

    Google Scholar 

  • Duportets, L., Gadenne, C., Dufour, M. C., and Couillaud, F. (1998) The pheromone biosynthesis activating neuropeptide (PBAN) of the black cutworm moth, Agrotis ipsilon: immunohistochemistry, molecular characterization and bioassay of its peptide sequence. Insect Biochem. Mol. Biol. 28, 591–599.

    Article  PubMed  CAS  Google Scholar 

  • Folkers, K., Jakanson, R., Horig, J., Xu, J. C., and Leander, S. (1984) Biological evaluation of substance P antagonists. Br. J. Pharmacol. 83, 449–456.

    PubMed  CAS  Google Scholar 

  • Fónagy, A., Schoofs, L., Matsumotor, S., De Loof, A., and Mitsui, T. M. (1992) Functional cross-reactivity of some locustamyotropins and Bombyx pheromone biosynthesis activating neuropeptide. J. Insect Physiol. 38, 651–657.

    Article  Google Scholar 

  • Gäde, G. (1997) The explosion of structural information on insect neuropeptides. Prog. Chem. Org. Nat. Prod. 71, 1–128.

    Google Scholar 

  • Gazit, Y., Dunkelblum, E., Benichis M., and Altstein, M. (1990) Effect of synthetic PBAN and derived peptides on sex pheromone biosynthesis in Heliothis peltigera (Lepidoptera: Noctuidae). Insect Biochem. 20, 853–858.

    Article  CAS  Google Scholar 

  • Gilon, C., Halle, D., Chorev, M., Selinger, Z., and Byk, G. (1991) Backbone cyclization: A new method for conferring conformational constraint on peptides. Biopolymers 31, 745–750.

    Article  PubMed  CAS  Google Scholar 

  • Gilon, C., Huonges, M., Matha, B., Gellerman, G., Hornik, V., Rosenfeld, R., et al. (1998a) Abackbone-cyclic, receptor 5-selective somatostatin analogue: synthesis, bioactivity, and nuclear magnetic resonance conformational analysis. J. Med. Chem. 41, 919–929.

    Article  PubMed  CAS  Google Scholar 

  • Gilon, C., Muller, D., Bitan, G., Salitra, Y., Goldwasser, I., and Hornik, V. (1998b) Cycloscan: conformational libraries of backbone cyclic peptides, in Peptides Chemistry, Structure and Biology, Ramage, R., and Epton, R., eds., Mayflower Scientific, England, pp. 423–424.

    Google Scholar 

  • Gilon, C., Zeltser, I., Daniel, S., Ben-Aziz, O., Schefler, I., and Altstein, M. (1997) Rationally designed neuropeptide antagonists: a novel approach for generation of environmentally friendly insecticides. Invertebrate Neurosci. 3, 245–250.

    Article  CAS  Google Scholar 

  • Golic-Gradadolnik, S., Mierke, D. F., Byk, G., Zeltser, I., Gilon, C., and Kessleer, H. (1994) Comparison of the conformations of active and nonactive backbone cyclic analogs of substance P as a tool to elucidate features of the bioactive conformation: NMR and molecular dynamics in water and dimethylsulfoxide. J. Med. Chem. 37, 2145–2152.

    Article  Google Scholar 

  • Goodman, M. and Ro, S. (1995) Peptidomimetics for drug design, in Medicinal Chemistry and Drug Discovery, 5th ed., Vol. 1, Wolff, E., ed., John Wiley, New York, pp. 803–861.

    Google Scholar 

  • Heinz-Erian, P., Coy, D. H., Tamura, M., Jones, S. W., Gardener, J. D. and Jensen, R. T. (1987) [D-Phe12]bombesin analogues: a new class of bombesin receptor antagonists. Am. J. Physiol. 252, G439-G442.

    PubMed  CAS  Google Scholar 

  • Holman, G. M., Nachman, R. J., Schoofs, L., Hayes, T. K., Wright, M. S., and DeLoof, A. (1991) The Leucophaea hindgut preparation is a rapid and sensitive bioassay tool for the isolation of insect myotropins of other insect species. Insect Biochem. 21, 107–112.

    Article  CAS  Google Scholar 

  • Hruby, V.J. (1981a) Structural and conformation analyses related to the activity of peptide hormones, in Perspectives in Peptide Chemistry, Eberle, A., Geiger, R., and Weiland, T., eds., S. Karger, Basel, Switzerland, pp. 207–220.

    Google Scholar 

  • Hruby, V. J. (1981b) Relation of conformation to biological activity in oxytocin, vasopressin and their analogues, in Topics in Molecular Pharmacology, Vol. 1, Burgen S. V., and Roberts G. C. K., eds., Elsevier, Amsterdam, The Netherlands, pp. 99–126.

    Google Scholar 

  • Hruby, V. J. (1992) Strategies in the development of peptide antagonists. Prog. Brain Res. 92, 215–224.

    Article  PubMed  CAS  Google Scholar 

  • Hruby, V. J., Al-Obeidi, F., and Kazmierski, W. (1990) Emerging approaches in the molecular design of receptor-selective peptide ligands: conformational, topographical and dynamic considerations. Biochem. J. 268, 249–262.

    PubMed  CAS  Google Scholar 

  • Iglesias, F., Marco, P., Francois, M.-C., Camps, F., Fabrias, G., and Jacquim-Joly, E. (2002). A new member of the PBAN family in Spodoptera littoralis: molecular cloning and immuno-visualisation in scotophase hemolymph. Insect Biochem. Mol. Biol. 32, 901–908.

    Article  PubMed  CAS  Google Scholar 

  • Imai, K., Konno, T., Nakazawa, Y., Komiya, T., Isobe, M., Koga, K., et al. (1991) Isolation and structure of diapause hormone of the silkworm, Bombyx mori. Proc. Japan Acad. 67, 98–101.

    CAS  Google Scholar 

  • Jacquin-Joly, E., Burnet, M., Franxois, M. C., Ammar, D., Nagnan-Le, Meillour, P., and Descoins, C. (1998) cDNA cloning and sequence determination of the pheromone biosynthesis activating neuropeptide of Mamestra brassicae: a new member of the PBAN family. Insect Biochem. Mol. Biol. 28, 251–258.

    Article  PubMed  CAS  Google Scholar 

  • Kasher, R., Oren, D. S., Barda, Y., and Gilon, C. (1999) Protein miniaturization: the backbone cyclic proteinomimetic approach. J. Mol. Biol. 292, 421–429.

    Article  PubMed  CAS  Google Scholar 

  • Kawano, T., Kataoka, H., Nagasawa, H., Isogai, A., and Suzuki, A. (1992) cDNA cloning and sequence determination of the pheromone biosynthesis activating neuropeptide of the silkworm, Bombyx mori. Biochem. Biophys. Res. Comm. 189, 221–226.

    Article  PubMed  CAS  Google Scholar 

  • Kawano, T., Kataoka, H., Nagasawa, H., Isogai, A., and Suzuki, A. (1997) Molecular cloning of a new type of c-DNA for pheromone biosynthesis activating neuropeptide in the silkworm, Bombyx mori. Biosci. Biotech. Biochem. 61, 1745–1747.

    Article  CAS  Google Scholar 

  • Kessler, H. (1982) Conformation and biological activity of cyclic peptides. Angew. Chem. Int. Ed. Engl. 21, 512–523.

    Article  Google Scholar 

  • Kitamura, A., Nagasawa, H., Kataoka, H., Ando, T., and Suzuki, A. (1990) Amino acid sequence of pheromone biosynthesis activating neuropeptide-II (PBAN-II) of the silkmoth Bombyx mori. Agric. Biol. Chem. 54, 2495–2497.

    PubMed  CAS  Google Scholar 

  • Kitamura, A., Nagasawa, H., Kataoka, H., Inoue, T., Matsumoto, S., Ando, T., and Suzuki, A. (1989) Amino acid sequence of pheromone-biosynthesis-activating neuropeptide (PBAN) of the silkworm Bombyx mori. Biochem. Biophys. Res. Commun. 163, 520–526.

    Article  PubMed  CAS  Google Scholar 

  • Kochansky, J. P., Raina, A. K., and Kempe, T. G. (1997) Structure-activity relationship in C-terminal fragment analogs of pheromone biosynthesis activating neuropeptide in Helicoverpa zea. Arch. Insect. Biochem. Physiol. 35, 315–332.

    Article  PubMed  CAS  Google Scholar 

  • Kuniyoshi, H., Nagasawa, H., Ando, T., and Suzuki, A. (1992a) N-terminal modified analogs of C-terminal fragments of PBAN with pheromonotropic activity. Insect Biochem. Mol. Biol. 22, 399–403.

    Article  CAS  Google Scholar 

  • Kuniyoshi, H., Nagasawa, H., Ando, T., Suzuki, A., Nachman, R. J., and Holman, M.G. (1992b) Cross-activity between pheromone biosynthesis activating neuropeptide (PBAN) and myotropic pyrokinin insect peptides. Biosci. Biotechnol. 56, 167–168.

    CAS  Google Scholar 

  • Llinares, M., Devin, C., Chloin, O., Azay, J., Noel-Artis, A.-M., Bernad, N., Fehrentz, J.-A., and Martinez J. (1999) Synthesis and biological activities of potent bombesin receptor antagonists. J. Pept. Res. 53, 275–283.

    Article  PubMed  CAS  Google Scholar 

  • Ma, P. W. K., Knipple, D. C., and Roelofs, W. L. (1994) Structural organization of the Helicoverpa zea gene encoding the precursor protein for pheromone biosynthesis-activating neuropeptide and other neuropeptides. Proc. Natl. Acad. Sci. USA 91, 6506–6510.

    Article  PubMed  CAS  Google Scholar 

  • Maretto, S., Schievano, E., Mammi, S., Bisello, A., Nakamoto, C., Rosenblatt, M., et al. (1998) Conformational studies of a potent Leu11, D-Trp12-containing lactam-bridged parathyroid hormone-related protein-derived antagonist. J. Pept. Res. 52, 241–248.

    Article  PubMed  CAS  Google Scholar 

  • Masler, E. P., Raina, A. K., Wagner, R. M., and Kochansky, J. P. (1994) Isolation and identification of a pheromonotropic neuropeptide from the brain-suboesophageal ganglion complex of Lymantria dispar: new member of the PBAN family. J. Insect Biochem. Mol. Biol. 24, 829–836.

    Article  CAS  Google Scholar 

  • Matsumoto, S., Fónagy, A., Kurihara, M., Uchiumi, K., Nagamine, T., Chijimatsu, M., and Mitsui, T. (1992) Isolation and primary structure of a novel pheromonotropic neuropeptide structurally related to leucopyrokinin from the armyworm larvae, Pseudaletia separata. Biochem. Biophys. Res. Commun. 182, 534–539.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, S., Kitamura, A., Nagasawa, H., Kataoka, H., Orikasa, C., Mitsui, T., and Suzuki, A. (1990) Functional diversity of a neurohormone produced by the suboesophageal ganglion: molecular identity of melanization and reddish colouration hormone and pheromone biosynthesis activating neuropeptide. J. Insect Physiol. 36, 427–432.

    Article  CAS  Google Scholar 

  • Nachman, R. J., Holman, M. G., and Cook, B. J. (1986) Active fragments and analogs of the insect neuropeptide leucopyrokinin: structure-function studies. Biochem. Biophys. Res. Commun. 137, 936–942.

    Article  PubMed  CAS  Google Scholar 

  • Nachman, R.J., Kuniyoshi, H., Roberts, V. A., Holman, G. M., and Suzuki, A. (1993a) Active conformation of the pyrokinin/PBAN neuropeptide family for pheromone biosynthesis in the silkworm. Biochem. Biophys. Res. Commun. 193, 661–666.

    Article  PubMed  CAS  Google Scholar 

  • Nachman, R. J., Holman, M. G. and Haddon, W. F. (1993b) Leads for insect neuropeptide mimetic development. Arch. Insect. Biochem. Physiol. 22, 181–197.

    Article  PubMed  CAS  Google Scholar 

  • Nachman, R. J., Holman, G. M., Schoofs, L., and Yamashita, O. (1993c) Silkworm diapause induction activity of myotropic pyrokinin (FXPRLamide) insect Nps. Peptides 14, 1043–1048.

    Article  PubMed  CAS  Google Scholar 

  • Nachman, R. J., Zdareej, J., Holman, M. G., and Hayes, T. K. (1997) Pupariation acceleration in fleshfly (Sarcophaga bullata) larvae by the pyrokinin/PBAN neuropeptide family. Ann. N. Y. Acad. Sci. 814, 73–79.

    Article  CAS  Google Scholar 

  • Nagasawa, H., Kuniyoshi, H., Arima, R., Kawano, T., Ando, T., and Suzuki, A. (1994) Structure and activity of Bombyx PBAN. Arch. Insect Biochem. Physiol. 25, 261–270.

    Article  PubMed  CAS  Google Scholar 

  • Nässel, D. R. (2002) Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones. Prog. Neurobiol. 68, 1–84.

    Article  PubMed  Google Scholar 

  • Piercey, M. F., Schroeder, L. A., and Einspahr, F. J. (1981) Behavioral evidence that substance P may be a spinal cord nociceptor neurotransmitter, in Peptides: Synthesis-Structure-Function, Rich, D. H., and Gross, E., eds., Pierce Chemical Co., Rockford, IL, pp. 589–592.

    Google Scholar 

  • Poyner, D., Cox, H., Bushfield, M., Treherne, J. M., and Demetrikpopulos, M. K. (2000) Neuropeptides in drug research. Prog. Drug Res. 54, 121–149.

    PubMed  CAS  Google Scholar 

  • Rafaeli, A. (2002) Neuroendocrine control of pheromone biosynthesis in moths. Int. Rev. Cytol. 213, 49–91.

    PubMed  CAS  Google Scholar 

  • Raina, A. K. and Klun, J. A. (1984) Brain factor control of sex pheromone production in the female corn earworm moth. Science 225, 531–533.

    Article  CAS  PubMed  Google Scholar 

  • Raina, A. K. and Gäde, G. (1988) Insect peptide nomenclature. Insect Biochem. 18, 785–787.

    Article  CAS  Google Scholar 

  • Raina, A. K., Jaffe, H., Kempe, T. G., Keim, P., Blacher, R. W., Fales, H. M., et al. (1989) Identification of a neuropeptide hormone that regulates sex pheromone production in female moths. Science 244, 796–798.

    Article  CAS  PubMed  Google Scholar 

  • Raina, A. K. and Kempe, T. G. (1990) A pentapeptide of the C-terminal sequence of PBAN with pheromonotropic activity. Insect Biochem. 20, 849–851.

    Article  CAS  Google Scholar 

  • Raina, A. K. and Kempe, T. G. (1992) Structure activity studies of PBAN of Helicoverpa zea (Lepidoptera: Noctuidae). Insect Biochem. Mol. Biol. 22, 221–225.

    Article  CAS  Google Scholar 

  • Rees, R. W. A., Foell, T. J., Chai, S.-Y., and Grant, N. (1974) Synthesis and biological activities of analogues of the luteinizing hormone-releasing hormone (LH-RH)modified in position 2. J. Med. Chem. 17, 1016–1019.

    Article  PubMed  CAS  Google Scholar 

  • Rhaleb, N.-E., Télémaque, S., Roussi, N., Dion, S., Jukic, D., Drapeau, G., and Regoli, D. (1991) Structure-activity studies of bradykinin and related peptides. Hypertension 17, 107–115.

    PubMed  CAS  Google Scholar 

  • Rodriguez, M., Dubreuil, P., Laur, J., Bali, J. P., and Martinez, J. (1987) Synthesis and biological activity of partially modified retro-inverso pseudopeptide derivatives of the C-terminal tetrapeptide of gastrin. J. Med. Chem. 30, 758–763.

    Article  PubMed  CAS  Google Scholar 

  • Rosell, S., Björkroth, U., Xu, J. C., and Folkers, K. (1983) The pharmacological profile of a substance P (SP) antagonists. Evidence for the existence of subpopulations of SP receptors. Acta Physiol. Scand. 117, 445–449.

    Article  PubMed  CAS  Google Scholar 

  • Saulitis, J., Mierke, D. F., Byk, G., Gilon, C., and Kessler, H. (1992) Conformation of cyclic analogous of substance P: NMR and molecular dynamics in dimethylsulfoxide. J. Am. Chem. Soc. 114, 4818–4823.

    Article  CAS  Google Scholar 

  • Sawyer, W. H., Pang, P. K. T., Seto, J., and McEnroe, M. (1981) Vasopressin analogs that antagonize antidiuretic responses by rats to the antidiuretic hormone. Science 212, 4951–4953.

    Article  Google Scholar 

  • Schoofs, L., Holman, M. G., Nachman, R. J., Hayes, T. K., and DeLoof, A. (1991) Isolation, primary structure, and synthesis of locustapyrokinin: a myotropic peptide of Locusta migratoria. Gen. Comp. Endocrinol. 81, 97–104.

    Article  PubMed  CAS  Google Scholar 

  • Schoofs, L., Vanden, J. B., and De Loof, A. (1993) The myotropic peptides of Locusta migratoria: Structures, distribution, functions and receptors. Insect Biochem. Mol. Biol. 23, 859–881.

    Article  PubMed  CAS  Google Scholar 

  • Teal, P. E. A., Abernathy, R. L., Nachman, R. J., Fang, N., Meredith, J. A., and Tumlinson, J. H. (1996) Pheromone biosynthesis activating neuropeptides: functions and chemistry. Peptides 17, 337–344.

    Article  PubMed  CAS  Google Scholar 

  • Vale, W., Grant, G., Rivier, J. E., Monahan, M., Amoss, M., Blackwell, R., et al. (1972) Synthetic polypeptide antagonists of the hypothalamic luteinizing hormone releasing hormone. Science 176, 933–934.

    Article  PubMed  CAS  Google Scholar 

  • Vevrek, R. J. and Stewart, J. M. (1985) Competitive antagonists of bradykinin. Peptides 6, 161–164.

    Article  Google Scholar 

  • Zdarek, J., Nachman, R. J., and Hayes, T. K. (1998) Structure-activity relationships of insect Nps of the pyrokinin/PBAN family and their selective action on pupariation in fleshfly (Neobelleria bullata) larvae. Eur. J. Entomol. 95, 9–16.

    CAS  Google Scholar 

  • Zeltser, I. Gilon, G., Ben-Aziz, O., Schefler, I., and Altstein, M. (2000) Discovery of a linear lead antagonist to the insect pheromone biosynthesis activating neuropeptide (PBAN). Peptides 21, 1457–1467.

    Article  PubMed  CAS  Google Scholar 

  • Zeltser, I. Ben-Aziz, O., Schefler, I. Bhargava, K., Altstein, M., and Gilon, C. (2001) Insect neuropeptide antagonists Part II: Synthesis and biological activity of backbone cyclic and precyclic PBAN antagonists. J. Pept. Res. 58, 1–13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Altstein.

Additional information

Contribution from the Agricultural Research Organization, the Volcani Center, Bet Dagan, Israel. No. 516/03, 2003 series.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altstein, M. Novel insect control agents based on neuropeptide antagonists. J Mol Neurosci 22, 147–157 (2004). https://doi.org/10.1385/JMN:22:1-2:147

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:22:1-2:147

Index Entries

Navigation