Journal of Molecular Neuroscience

, Volume 19, Issue 3, pp 321–327 | Cite as

In vivo brain imaging of tangle burden in humans

  • Gary W. Small
  • Eric D. Agdeppa
  • Vladimir Kepe
  • Nagichettiar Satyamurthy
  • Sung-Cheng Huang
  • Jorge R. Barrio
Clinical Development


Cerebral neurofibrillary tangles (NFTs) accumulate in a predictable sequence decades before the clinical symptoms of Alzheimer’s disease emerge, and the degree of tangle degeneration correlates with the severity of cognitive impairment. A valid in vivo marker of tangle burden, therefore, would be useful for presymptomatic and symptomatic disease detection and treatment monitoring. Recent advances using positron emission tomography (PET) indicate the feasibility of in vivo imaging that provides a combined signal of both neurofibrillary tangles and senile plaques. Such results are encouraging that a tangle-specific marker will be found; however, several methodological issues first need to be addressed, including scanner spatial resolution in the relatively small brain regions where tangles accumulate. NFT-specific imaging probes will need to be lipophilic in order to cross the blood-brain barrier and neuronal membranes and have a high binding affinity to NFTs with minimal nonspecific binding, which would result in a high signal-to-background ratio in PET images.

Index Entries

Alzheimer’s disease positron emission tomography cerebral glucose metabolism neurofibrillary tangles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashburn T. T., Han H., McGuinness B. F., and Lansbury P. T. (1996) Amyloid probes based on Congo Red distinguish between fibrils comprising different peptides. Chem. Biol. 3, 351–358.PubMedCrossRefGoogle Scholar
  2. Barrio J. R., Huang S.-C., Cole G. M., Satyamurthy N., Petric A., and Small G. W. (1999) PET imaging of tangles and plaques in Alzheimer disease. J. Nucl. Med. 40(Suppl.), 70P-71P.Google Scholar
  3. Braak E., Griffing K., Arai K., Bohl J., Bratzke H., and Braak H. (1999) Neuropathology of Alzheimer’s disease: what is new since A. Alzheimer? Eur. Arch. Psychiatry Clin. Neurosci. 249(Suppl. 3), III/14-III/22.Google Scholar
  4. Braak H. and Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol. 82, 239–259.PubMedCrossRefGoogle Scholar
  5. Cherry S. R., Shao Y., Silverman R. W., et al. (1997) MicroPET: a high resolution PET scanner for imaging small animals. IEEE Trans. Nucl. Sci. NS-44, 1161–1166.CrossRefGoogle Scholar
  6. Dickson D. W. (1997) Neuropathological diagnosis of Alzheimer’s disease: a perspective from longitudinal clinicopahtological studies. Neurobiol. Aging 18, S21-S26.PubMedCrossRefGoogle Scholar
  7. Ghebremedhin E., Schultz C., Braak E., and Braak H. (1998) High frequency of apolipoprotein E Σ4 allele in young individuals with very mild Alzheimer’s disease-related neurofibrillary changes. Exp. Neurol. 153, 152–155.PubMedCrossRefGoogle Scholar
  8. Gotz J., Tolnay M., Barmettler R., Ferrari A., Burki K., Goedert M., et al. (2001) Human tau transgenic mice, in Neuropathology and Genetics of Dementia (Tolnay M. and Probst A., eds.), Kluwer Academic/Plenum, New York.Google Scholar
  9. Hoffman E. J., Huang S.-C., and Phelps M. E. (1979) Quantitation in positron emission computed tomography: 1. Effect of object size. J. Comp. Assist. Tomogr. 3, 299–308.CrossRefGoogle Scholar
  10. Huang S.-C., Barrio J. R., and Phelps M. E. (1986) Neuroreceptor assay with positron emission tomography: equilibrium versus dynamic approaches. J. Cereb. Blood Flow Metab. 6, 515–521.PubMedGoogle Scholar
  11. Jacobson A., Petric A., Hogenkamp D., Sinur A., and Barrio J. R. (1996) 1,1-Dicyano-2-(6-dimethylamino)naphthalen-2-yl)propene (DDNP): a solvent polarity and viscosity sensitive fluorophore for fluorescence microscopy. J. Am. Chem. Soc. 118, 5572–5579.CrossRefGoogle Scholar
  12. Kirschner D. A., Abraham C., and Selkoe D. J. (1986) X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-β conformation. Proc. Natl. Acad. Sci. USA 83, 503–507.PubMedCrossRefGoogle Scholar
  13. Klunk W. E., Debnath M. L., and Pettegrew J. W. (1995) Chrysamine-G binding to Alzheimer and control brain: autopsy study of a new amyloid probe. Neurobiol. Aging 16, 541–548.PubMedCrossRefGoogle Scholar
  14. Lovat L. B., O’Brien A. A., Armstrong S. F., et al. (1998) Scintigraphy with 123I-serum amyloid P component in Alzheimer disease. Alzheimer’s Dis. Assoc. Disord. 12, 208–210.CrossRefGoogle Scholar
  15. Majocha R. E., Reno J. M., Friedland R. P., VanHaight C., Lyle L. R., and Marotta C. A. (1992) Development of a monoclonal antibody specific for beta/A4 amyloid in Alzheimer’s disease brain for application to in vivo imaging of amyloid angiopathy. J. Nucl. Med. 33, 2184–2189.PubMedGoogle Scholar
  16. Motter R., Vigo-Pelfrey C., Kholodenko D., et al. (1995) Reduction of beta-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer’s disease. Ann. Neurol. 38, 643–648.PubMedCrossRefGoogle Scholar
  17. Nagy Z., Esiri M. M., Jobst K. A., Morris J. H., King E. M.-F., McDonald B., et al. (1997) The effects of additional pathology on the cognitive deficit in Alzheimer disease. J. Neuropath. Exp. Neurol. 56, 165–170.PubMedCrossRefGoogle Scholar
  18. Phelps M. E., Huang S. C., Hoffman E. J., Selin C. E., and Kuhl D. E. (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18) 2-fluoro-2-deoxyglucose: validation of method. Ann. Neurol. 6, 371–388.PubMedCrossRefGoogle Scholar
  19. Price J. L., Davis P. G., Morris J. C., and White D. L. (1991) The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiol. Aging 12, 295–312.PubMedCrossRefGoogle Scholar
  20. Price J. L. and Morris J. C. (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann. Neurol. 45, 358–368.PubMedCrossRefGoogle Scholar
  21. Reiman E. M., Caselli R. J., Yun L. S., et al. (1996) Preclinical evidence of Alzheimer’s disease in persons homozygous for the ε4 allele for apolipoprotein E. N. Engl. J. Med. 334, 752–758.PubMedCrossRefGoogle Scholar
  22. Reiman E. M., Caselli R. J., Chen K., Alexander G. E., Bandy D., and Frost J. (2001) Declining brain activity in cognitively normal apolipoprotein E ε4 heterozygotes: A foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 98, 3334–3339.PubMedCrossRefGoogle Scholar
  23. Shoghi-Jadid K., Small G. W., Agdeppa E. D., Kepe V., Ercoli L.M., Siddarth P., et al. (2002) Localization of neurofibrillary tangles (NFTs) and beta-amyloid plaques (APs) in the brains of living patients with Alzheimer’s disease. Am. J. Geriatr. Psychiatry 10, 24–35.PubMedCrossRefGoogle Scholar
  24. Small G. W., Mazziotta J. C., Collins M. T., Baxter L. R., Phelps M. E., Mandelkern M. A., et al. (1995) Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA 273, 942–947.PubMedCrossRefGoogle Scholar
  25. Small G. W., Rabins P. V., Barry P. P., Buckholtz N. S., DeKosky S. T., Ferris S. H., et al. (1997) Diagnosis and treatment of Alzheimer disease and related disorders: consensus statement of the American Association for Geriatric Psychiatry, the Alzheimer’s Association, and the American Geriatrics Society. JAMA 278, 1363–1371.PubMedCrossRefGoogle Scholar
  26. Small G. W., Ercoli L. M., Silverman D. H. S., Huang S.-C., Komo S., Bookheimer S. Y., et al. (2000) Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 97, 6037–6042.PubMedCrossRefGoogle Scholar
  27. Yang J., Huang S.-C., Mega M., Lin K. P., Toga A., Small G. W., et al. (1996) Investigation of partial volume correction methods for brain FDG-PET studies. IEEE Trans. Nucl. Sci. NS-43, 3322–3327.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2002

Authors and Affiliations

  • Gary W. Small
    • 1
    • 3
    • 4
    • 5
  • Eric D. Agdeppa
    • 2
  • Vladimir Kepe
    • 2
  • Nagichettiar Satyamurthy
    • 2
  • Sung-Cheng Huang
    • 2
  • Jorge R. Barrio
    • 2
  1. 1.Department of Psychiatry and Biobehavioral SciencesUniversity of California, Los Angeles School of MedicineUSA
  2. 2.Department of Molecular and Medical, PharmacologyUniversity of California, Los Angeles School of MedicineUSA
  3. 3.Alzheimer’s Disease Research CenterUniversity of California, Los Angeles School of MedicineUSA
  4. 4.Center on AgingUniversity of California, Los Angeles School of MedicineUSA
  5. 5.the VA Greater Los Angeles Healthcare SystemLos Angeles

Personalised recommendations