Journal of Molecular Neuroscience

, Volume 15, Issue 3, pp 189–204 | Cite as

Requirement for presenilin 1 in facilitating jagged 2-mediated endoproteolysis and signaling of notch 1

  • Jayme L. Martys-Zage
  • Seong-Hun Kim
  • Bridget Berechid
  • Sarah J. Bingham
  • Su Chu
  • Jeffrey Sklar
  • Jeff Nye
  • Sangram S. Sisodia


Presenilin 1 (PS1), a polytopic membrane protein, is required for endoproteolytic processing at γ-secretase site within the transmembrane domain of amyloid precursor proteins (APP). In addition, PS1 and its orthologues facilitate signaling of Notch family members, cell-surface receptors that specify cell fates during development. To clarify the mechanism(s) by which PS facilitates Notch signaling, we examined human Jagged-2-dependent metabolism and activity of a chimeric full-length Notch1-GFP molecule expressed in fibroblasts with heterozygous, or homozygous deletions of PS1. We demonstrate that PS1 is required for facilitating Jagged 2-mediated proteolysis and that translocation and accumulation of NICD in the nucleus correlates with signaling activity. Moreover, in a ligand-independent, Ca2+-depletion paradigm, we demonstrate that PS1 facilitates endoproteolysis of a plasma-membrane-associated, Notch1-GFP derivative. Finally, we report that NICD production is inhibited by L-685,458, a potent and selective inhibitor that blocks solubilized γ-secretase activity and Aβ production in cultured cells. These findings strongly suggest that intramembranous processing of APP and Notch 1 are mediated by similar, if not identical, proteases that require PS1 for their activation.

Index Entries

Presenilin Notch 1 Jagged 2 Alzheimer’s disease green fluorescent protein 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Artavanis-Tsakonas S., Rand M. D., and Lake R. J. (1999) Notch signaling: cell fate control and signal integration in development. Science 284, 770–776.PubMedCrossRefGoogle Scholar
  2. Berechid B. E., Thinakaran G., Wong P. C., Sisodia S. S., and Nye J. S. (1999) Lack of requirement for presenilin1 in Notch1 signaling. Curr. Biol. 9, 1493–1496.PubMedCrossRefGoogle Scholar
  3. Brou C., Logeat F., Gupta N., Bessia C., LeBail O., Doedens J. R., et al. (2000) A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol. Cell 5, 207–216.PubMedCrossRefGoogle Scholar
  4. Chan Y. M. and Jan Y. N. (1999) Presenilins, processing of beta-amyloid precursor protein, and notch signaling. Neuron 2, 201–204.CrossRefGoogle Scholar
  5. Chen C. and Okayama H. (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell Biol. 7, 2745–2752.PubMedGoogle Scholar
  6. DeStrooper B., Annaert W., Cupers P., Saftig P., Craessaerts K., Mumm J. S., et al. (1999) A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522.CrossRefGoogle Scholar
  7. DeStrooper B., Saftig P., Craessaerts K., Vanderstichele H., Guhde G., Annaert W., et al. (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391, 387–390.CrossRefGoogle Scholar
  8. Esler W. P., Kimberly W. T., Ostaszewski B. L., Diehl T. S., Moore C. L., Tsai J.-Y., et al. (2000) Transition-state analogue inhibitors of -secretase bind directly to presenilin-1. Nature Cell Biol. 2, 428–434.PubMedCrossRefGoogle Scholar
  9. Hartmann D., DeStrooper B., and Saftig P. (1999) Presenilin-1 deficiency leads to loss of Cajal-Retzius neurons and cortical dysplasia similar to human type 2 lissencephaly. Curr. Biol. 9, 719–727.PubMedCrossRefGoogle Scholar
  10. Huppert S. S., Le A., Schroeter E. H., Mumm J. S., Saxena M. T., Milner L. A., and Kopan R. (2000) Embryonic lethality in mice homozygous for a processing-deficient allele of Notch1. Nature 405, 966–970.PubMedCrossRefGoogle Scholar
  11. Kim S. H., Wang R., Gordon D. J., Bass J., Steiner D. F., Lynn D. G., et al. (1999) Furin mediates enhanced production of fibrillogenic A Bri peptides in familial British dementia. Nat. Neurosci. 2, 984–988.PubMedCrossRefGoogle Scholar
  12. Lecourtois M. and Schweisguth F. (1998) Indirect evidence for Delta-dependent intracellular processing of notch in Drosophila embryos. Curr. Biol. 8, 771–774.PubMedCrossRefGoogle Scholar
  13. Levitan D. and Greenwald I. (1995) Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene. Nature 377, 351–354.PubMedCrossRefGoogle Scholar
  14. Li Y. M., Lai M. T., Xu M., Huang Q., DiMuzio-Mower J., Sardana M. K., et al. (2000a) Presenilin 1 is linked with gamma -secretase activity in the deter-gent solubilized state. Proc. Natl. Acad. Sci. USA 97, 6138–6143.PubMedCrossRefGoogle Scholar
  15. Li Y. M., Xu M., Lai M. T., Huang Q., Castro J. L., DiMuzio-Mower J., et al. (2000b) Photoactivated gamma-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 405, 689–694.PubMedCrossRefGoogle Scholar
  16. Logeat F., Bessia C., Brou C., LeBail O., Jarriault S., Seidah N. G., and Israel A. (1998) The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc. Natl. Acad. Sci. USA 95, 8108–8112.PubMedCrossRefGoogle Scholar
  17. Luo B., Aster J. C., Hasserjian R. P., Kuo F., and Sklar J. (1997) Isolation and functional analysis of a cDNA for human Jagged2, a gene encoding a ligand for the Notch1 receptor. Mol. Cell Biol. 17, 6057–6067.PubMedGoogle Scholar
  18. Moehring J. M. and Moehring, T. J. (1983) Strains of CHO-K1 cells resistant to Pseudomonas exotoxin A and cross-resistant to diphtheria toxin and viruses. Infect. Immun. 41, 998–1009.PubMedGoogle Scholar
  19. Moehring J. M., Inocencio N. M., Robertson B. J., and Moehring, T. J. (1993) Expression of mouse furin in a Chinese hamster cell resistant to Pseudomonas exotoxin A and viruses complements the genetic lesion. J. Biol. Chem. 268, 2590–2594.PubMedGoogle Scholar
  20. Mumm J. S., Schroeter E. H., Saxena M. T., Griesemer A., Tian X., Pan D. J., Ray W. J., and Kopan R. (2000) Aligand-induced extracellular cleavage regulates γ-secretase-like proteolytic activation of Notch1. Molecular Cell 5, 197–206.PubMedCrossRefGoogle Scholar
  21. Naruse S., Thinakaran G., Luo J. J., Kusiak J. W., Tomita T., Iwatsubo T., et al. (1998) Effects of PS1 deficiency on membrane protein trafficking in neurons. Neuron 21, 1213–1221.PubMedCrossRefGoogle Scholar
  22. Price D. L. and Sisodia S. S. (1998) Mutant genes in familial Alzheimer’s disease and transgenic models. Annu. Rev. Neurosci. 21, 479–505.PubMedCrossRefGoogle Scholar
  23. Rand M. D., Grimm L. M., Artavanis-Tsakonas S., Patriub V., Blacklow S. C., Sklar J., and Aster J. C. (2000) Calcium depletion dissociates and activates heterodimeric notch receptors. Mol. Cell Biol. 20, 1825–1835.PubMedCrossRefGoogle Scholar
  24. Ray W. J., Yao M., Mumm J., Schroeter E. H., Saftig P., Wolfe M., et al. (1999) Cell surface presenilin-1 participates in the gamma-secretase-like proteolysis of Notch. J. Biol. Chem. 274, 36,801–36,807.Google Scholar
  25. Redmond L., Oh S. R., Hicks C., Weinmaster G., and Ghosh A. (2000) Nuclear Notch1 signaling and the regulation of dendritic development. Nat. Neurosci. 3, 30–40.PubMedCrossRefGoogle Scholar
  26. Schroeter E. H., Kisslinger J. A., and Kopan R. (1998) Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386.PubMedCrossRefGoogle Scholar
  27. Selkoe D. J. (2000) Notch and presenilins in vertebrates and invertebrates: implications for neuronal development and degeneration. Curr. Opin. Neurobiol. 10, 50–57.PubMedCrossRefGoogle Scholar
  28. Shen J., Bronson R. T., Chen D. F., Xia W., Selkoe D. J., and Tonegawa S. (1997) Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 89, 629–639.PubMedCrossRefGoogle Scholar
  29. Sherrington R., Rogaev E. I., Liang Y., Rogaeva E. A., Levesque G., Ikeda M., et al. (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375, 754–760.PubMedCrossRefGoogle Scholar
  30. Song W., Nadeau P., Yuan M., Yang X., Shen J., and Yankner B. A. (1999) Proteolytic release and nuclear translocation of Notch-1 are induced by presenilin-1 and impaired by pathogenic presenilin-1 mutations. Proc. Natl. Acad. Sci. USA 96, 6959–6963.PubMedCrossRefGoogle Scholar
  31. Spence M. J., Sucic J. F., Foley B. T., and Moehring T. J. (1995) Analysis of mutations in alleles of the fur gene from an endoprotease-deficient Chinese hamster ovary cell strain. Somat. Cell Mol. Genet. 21, 1–18.PubMedCrossRefGoogle Scholar
  32. Struhl G. and Adachi A. (1998) Nuclear access and action of notch in vivo. Cell 93, 649–660.PubMedCrossRefGoogle Scholar
  33. Struhl G. and Greenwald I. (1999) Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398, 522–525.PubMedCrossRefGoogle Scholar
  34. Thinakaran G., Teplow D. B., Siman R., Greenberg B., and Sisodia S. S. (1996) Metabolism of the “Swedish” amyloid precursor protein variant in Neuro2a (N2a) cells. J. Biol. Chem. 271, 9390–9397.PubMedCrossRefGoogle Scholar
  35. Vidal R., Frangione B., Rostagno A., Mead S., Revesz T., Plant, G., and Ghiso J. (1999) A stopcodon mutation in the BRI gene associated with familial British dementia. Nature 399, 776–781.PubMedCrossRefGoogle Scholar
  36. Wong P. C., Zheng H., Chen H., Becher M. W., Sirinathsinghji D. J., Trumbauer M. E., et al. (1997) Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Nature 387, 288–292.PubMedCrossRefGoogle Scholar
  37. Ye Y., Lukinova N., and Fortini M. E. (1999) Neurogenic phenotypes and altered Notch processing in Drosophila Presenilin mutants. Nature 398, 525–529.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2001

Authors and Affiliations

  • Jayme L. Martys-Zage
    • 1
  • Seong-Hun Kim
    • 1
  • Bridget Berechid
    • 2
  • Sarah J. Bingham
    • 3
  • Su Chu
    • 1
  • Jeffrey Sklar
    • 4
  • Jeff Nye
    • 2
  • Sangram S. Sisodia
    • 1
  1. 1.Departments of Neurobiology, Pharmacology, and Physiology, Howard Hughes Medical InstituteThe University of ChicagoChicago
  2. 2.Department of Molecular Pharmacology and Biological Chemistry and Department of PediatricsNorthwestern University Medical SchoolChicago
  3. 3.Kalamazoo CollegeKalamazoo
  4. 4.Department of PathologyHarvard Medical SchoolCambridge

Personalised recommendations