Journal of Molecular Neuroscience

, Volume 15, Issue 1, pp 19–29 | Cite as

Phosphorylation of the common neurotrophin receptor p75 by p38β2 kinase affects NF-κB and AP-1 activities

  • James J. L. Wang
  • Andrea Tasinato
  • Douglas W. Ethell
  • M. Pia Testa
  • Dale E. Bredesen


The signaling pathways invoked by ligand binding to the common neurotrophin receptor p75NTR are incompletely understood. Using the yeast two-hybrid system, we identified the mitogen-activated protein (MAP) kinase p38β2 as a specific interactor with the 5th and 6th alpha helices of the p75NTR intracytoplasmic region. The consequences of this interaction were studied, using primary cultures of Schwann cells and the 293T cell line. Phosphorylation of p75NTR by p38β2 was induced in vitro and in vivo by MAP kinase kinases (MKK) 6 activation. This pathway demonstrated feedback in that nerve growth factor (NGF) binding increased p38β2 activity, causing an increase of nuclear factor-κB (NF-κB) activation and a decrease of AP-1 activation. The mechanisms described explain at least in part why NGF binding to p75NTR increases cell survival in certain circumstances.

Index Entries

apoptosis MAP kinase NGF 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albensi B. C. and Mattson M. P. (2000) Evidence for the involvement of TNF and NF-kappaB in hippocampal synaptic plasticity. Synapse 35, 151–159.PubMedCrossRefGoogle Scholar
  2. Barker P. A. and Shooter E. M. (1994) Disruption of NGF binding to the low affinity neurotrophin receptor p75LNTR reduces NGF binding to TrkA on PC12 cells. Neuron 13, 203–215.PubMedCrossRefGoogle Scholar
  3. Bredesen D. E. and Rabizadeh S. (1997) p75NTR and apoptosis: Trk-dependent and Trk-independent effects. Trends Neurosci. 20, 287–290.PubMedCrossRefGoogle Scholar
  4. Bredesen D. E., Ye X., Tasinato A., Sperandio S., Wang J. J.-L., Assa-Munt N., and Rabizadeh S. (1998) p75NTR and the concept of cellular dependence: seeing how the other half die. Cell Death Diff., 5, 365–371.CrossRefGoogle Scholar
  5. Carpentier I., Declercq W., Malinin N. L., Wallach D., Fiers W., and Beyaert R. (1998) Traf2 plays a dual role in NF-κB-dependent gene activation by mediating the TNF-induced activation of p38 MAPK and IκB kinase pathway. FEBS Lett. 425, 195–198.PubMedCrossRefGoogle Scholar
  6. Carter B. D., Kaltscchmidt C., Kaltschmidt B., Offenhauser N., Bohm-Matthaei R., Baeuerle P. A., and Barde Y. A. (1996) Selective activation of NF-κB by nerve growth factor through the neurotrophin receptor p75. Science 272, 542–545.PubMedCrossRefGoogle Scholar
  7. Casaccia-Bonnefil P., Carter B. D., Dobrowsky R. T., and Chao M. V. (1996) Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature 383, 716–719.PubMedCrossRefGoogle Scholar
  8. Chao M. V. (1994) The p75 neurotrophin receptor. J. Neurobiol. 25, 1373–1385.PubMedCrossRefGoogle Scholar
  9. Chao M. V. and Hempstead B. L. (1995) p75 and Trk: a two-receptor system. Trends Neurosci. 18, 321–326.PubMedCrossRefGoogle Scholar
  10. Chapman B. S. (1995) A region of the 75 kDa neurotrophin receptor homologous to the death domains of TNFR-1 and Fas. FEBS Lett. 374, 216–220.PubMedCrossRefGoogle Scholar
  11. Dobrowsky R. T., Werner M. H., Castellino A. M., Chao M. V., and Hannun Y. A. (1994) Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. Science 265, 1596–1599.PubMedCrossRefGoogle Scholar
  12. Dobrowsky R. T., Jenkins G. M., and Hannun Y. A. (1995) Neurotrophins induce sphingomyelin hydrolysis. J. Biol. Chem. 270, 22,135–22,142.Google Scholar
  13. Enslen H., Raingeaud J., and Davis R. J. (1998) Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the map kinase kinases MKK3 and MKK6. J. Biol. Chem. 273, 1741–1748.PubMedCrossRefGoogle Scholar
  14. Feinstein E., Wallach D., Boldin M., Varfolomeev E., and Kimchi A. (1995) The death domain: a module shared by proteins with diverse cellular functions. TIBS 20, 342–367.PubMedGoogle Scholar
  15. Furukawa K. and Mattson M. P. (1998) The transcription factor NF-kappaB mediates increases in calcium currents and decreases in NMDA- and AMPA/kainate-induced currents induced by tumor necrosis factor-alpha in hippocampal neurons. J. Neurochem. 70, 1876–1886.PubMedCrossRefGoogle Scholar
  16. Goebeler M., Kilian K., Gillitzer R., Kunz M., Yoshimura T., Brocker E. B, et al. (1999) The MKK6/p38 stress kinase cascade is critical for tumor necrosis factor-alpha-induced expression of monocyte-chemoattractant protein-1 in endothelial cells. Blood 93, 857–865.PubMedGoogle Scholar
  17. Green D. R. (1998) Apoptotic pathways: the roads to ruin. Cell 94, 695–698.PubMedCrossRefGoogle Scholar
  18. Hantzopoulos P. A., Suri C., Glass M. P., Goldfarb M. P., and Yancopolous G. D. (1994) The low affinity NGF receptor, p75, can collaborate with each of the Trks to potentiate functional responses to the neurotrophins. Neuron 13, 187–201.PubMedCrossRefGoogle Scholar
  19. Hazzalin C. A., Cuenda A., Cano E., Cohen P., and Mahadevan L. C. (1997) Effects of the inhibition of p38/RK MAP kinase on induction of five fos and jun genes by diverse stimuli. Oncogene 15, 2321–2331.PubMedCrossRefGoogle Scholar
  20. Hempstead B. L., Martin-Zanca D., Kaplan D. R., Parada L. F., and Chao M. V. (1991) High-affinity NGF binding requires co-expression of the trk protooncogene and the low-affinity NGF receptor. Nature 350, 678–683.PubMedCrossRefGoogle Scholar
  21. Hibi M., Lin A., Smeal T., and Karin M. (1993) Identification of an oncoprotein and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev. 7, 2135–2148.PubMedGoogle Scholar
  22. Jenifer J., Casaccia-Bonnefll P., Lazenby B., and Carter B. D. (1998) NGF activation of NF-κB through the p75 receptor promotes survival. Abs Soc. Neurosci. 24, 1292.Google Scholar
  23. Jiang Y., Chen C., Li Z., Guo W., Gegner J. A., Lin S., and Han J. (1996) Characterization of the structure and function of a new mitogen-activated protein kinase (p38β). J. Biol. Chem. 271, 17,920–17,926.Google Scholar
  24. Kaplan D. R. and Miller F. D. (1997) Signal transduction by the neurotrophin receptors. Curr. Opin. Cell Biol. 9, 213–221.PubMedCrossRefGoogle Scholar
  25. Khursigara G., Orlinick J. R., and Chao M. V. (1999) Association of the p75 neurotrophin receptor with TRAF6. J. Biol. Chem. 274, 2597–2600.PubMedCrossRefGoogle Scholar
  26. Ledgerwood, E. C., Pober, J. S., and Bradley, J. R. (1999) Recent advances in the molecular basis of TNF-α signal transduction. Lab. Invest. 79(9), 1041–1050.PubMedGoogle Scholar
  27. Lezoualc’h F., Sagara Y., Holsboer F., and Behl C. (1998) High constitutive NF-κB activity mediates resistance to oxidative stress in neuronal cells. J. Neurosci. 18, 3224–3232.PubMedGoogle Scholar
  28. Matsuoka I., Meyer M., and Thoenen H. (1991) Cell-type specific regulation of nerve growth factor (NGF) synthesis in non-neuronal cells: comparison of Schwann cells with other cell types. J. Neurosci. 11, 3165–3177.PubMedGoogle Scholar
  29. Mattson M. P., Goodman Y., Luo H., Fu W., and Furukawa K. (1997) Activation of NF-kappaB protects hippocampal neurons against oxidative stress-induced apoptosis: evidence for induction of managanese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration. J. Neurosci. Res. 49, 681–697.PubMedCrossRefGoogle Scholar
  30. Morooka T. and Nishida E. (1998) Requirement of p38 mitogen-activated protein kinase for neuronal differentiation in PC12 cells. J. Biol. Chem. 273, 24,285–24,288.CrossRefGoogle Scholar
  31. Nagata S. (1998) Fas-induced apoptosis. Int. Med. 37, 179–181.Google Scholar
  32. Nemoto S., Xiang J., Huang S., and Lin A. (1998) Induction of apoptosis by SB202190 through inhibition of p38beta mitogen-activated protein kinase. J. Biol. Chem. 273, 16,415–16,420.CrossRefGoogle Scholar
  33. Ohmichi M., Pang L., Decker S. J., and Saltiel A. R. (1992) Nerve growth factor stimulates the activities of the raf-1 and the mitogen-activated protein kinases via the trk protooncogene. J. Biol. Chem. 267, 14,604–14,610.Google Scholar
  34. Rabizadeh S., Oh J., Zhong L., Yang J., Bitler C. M., Butcher L. L., and Bredesen D. E. (1993) Induction of apotosis by the low-affinity NGF receptor. Science 261, 345–348.PubMedCrossRefGoogle Scholar
  35. Rabizadeh S., Rabizadeh S., Ye X., Wang J. J.-L., and Bredesen D. E. (1999) Neurotrophin dependence mediated by p75NTR: contrast between rescue by BDNF and NGF. Cell Death Diff. 6, 1222–1227.CrossRefGoogle Scholar
  36. Reinhard C., Shamoon B., Shyamala V., and Williams L. (1997) Tumor necrosis factor α-induced activation of c-jun N-terminal kinase is mediated by Traf2. EMBO J. 16, 1080–1092.PubMedCrossRefGoogle Scholar
  37. Spencer D. M., Wandless T. J., Schreiber S. L., and Crabtree G. R. (1993) Controlling signal transduction with synthetic ligands. Science 262, 1019–1024.PubMedCrossRefGoogle Scholar
  38. Stein B., Yang M. X., Young D. B., Janknecht R., Hunter T., Murray B. W., and Barbosa M. S. (1997) p38-2, a novel mitogen-activated protein kinase with distinct properties. J. Biol. Chem. 272, 19,509–19,517.Google Scholar
  39. Tartaglia L. A., Ayres T. M., Wong G. H. W., and Goeddel D. V. (1993) A novel domain within the 55 kd TNF receptor signals cell death. Cell 74, 845–853.PubMedCrossRefGoogle Scholar
  40. Toyoshima F., Moriguchi T., and Nishida E. (1994) Fas induces cytoplasmic apoptotic responses and activation of the MKK7-JNK/SAPK and MKK6-p38 pathways independent of CPP32-like proteases. J. Cell. Biol. 139, 1005–1015.CrossRefGoogle Scholar
  41. Verdi J. M., Birren S. J., Ibanez C. F., Persson H., Kaplan D. R., Benedetti M., et al. (1994) p75lngfr regulates Trk signal transduction and NGF-induced neuronal differentiation in MAH cells. Neuron 12, 733–745.PubMedCrossRefGoogle Scholar
  42. Volente C., Angelastro J. M., and Greene L. A. (1993a) Association of protein kinases ERK1 and ERK2 with p75 nerve growth factor receptors. J. Biol. Chem. 268, 21,410–21,415.Google Scholar
  43. Volonte C., Ross A. H., and Greene L. A. (1993b) Association of a purine-analogue-sensitive protein kinase activity with p75 nerve growth factor receptors. Mol. Biol. Cell. 4, 71–78.PubMedGoogle Scholar
  44. Wang J. J.-L., Rabizadeh S., Tasinato A., Sperandio S., Ye X., Assa-Munt N., et al. (2000) Dimerization-dependent block of the pro-apoptotic effect of p75NTR. J. Neurosci. Res. 60, 587–593.PubMedCrossRefGoogle Scholar
  45. Xing J., Kornhauser J. M., Xia Z., Thiele E. A., and Greenberg M. E. (1998) Nerve growth factor activates extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways to stimulate CREB serine 133 phosphorylation. Mol. Cell. Biol. 18, 1946–1955.PubMedGoogle Scholar
  46. Ye X., Mehlen P., Rabizadeh S., Van Arsdale T., Zhang H., Shin H., et al. (1999) Traf family proteins interact with the common neurotrophin receptor and modulate apoptosis induction. J. Biol. Chem. 274, 30,202–30,208.Google Scholar
  47. Yoon S. O., Casaccia-Bonnefil P., Carter B., and Chao M. V. (1998) Competitive signaling between TrkA and p75 nerve growth factor receptors determines cell survival. J. Neurosci. 18, 3273–3281.PubMedGoogle Scholar
  48. Zechner D., Craig R., Hanford D. S., McDonough P. M., Sabbadini R. A., and Glembotski C. C. (1998) MKK6 activates myocardial cell NF-κB and inhibits apoptosis in a p38 mitogen-activated protein kinase-dependent manner. J. Biol. Chem. 273, 8232–8239.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2000

Authors and Affiliations

  • James J. L. Wang
    • 1
  • Andrea Tasinato
    • 1
  • Douglas W. Ethell
    • 1
  • M. Pia Testa
    • 1
  • Dale E. Bredesen
    • 2
  1. 1.Program on AgingThe Burnham InstituteLa Jolla
  2. 2.Buck Center for Research in AgingNovato

Personalised recommendations