Journal of Molecular Neuroscience

, Volume 12, Issue 3, pp 157–164 | Cite as

Animal models as an aid to the study and therapy of described leukodystrophies and other white matter disorders

  • Kunihiko Suzuki
Session I


Molecular Neuroscience Volume Leukodystrophy Adrenoleukodystrophy Metachromatic Leukodystrophy Canavan Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chapman V. M., Miller D. R., Armstrong D., and Caskey C. T. (1989) Recovery of induced mutations for X chromosome-linked muscular dystrophy in mice. Proc. Natl. Acad. Sci. USA 86, 1292–1296.PubMedCrossRefGoogle Scholar
  2. The Dutch-Belgian Fragile X Consortium (1994) Fmr1 knockout mice: A model to study Fragile X mental retardation. Cell 78, 23–33.Google Scholar
  3. Gurney M. E., Puo H., Chin A. Y., Dal Canto M. C., Polchov C. Y., Alexander D. D., et al. (1996) Major neuron degeneration in mice that express a human Cu, Zn Superoxide Dismutase mutation. Science 264, 1772–1775.CrossRefGoogle Scholar
  4. Mangiarini L., Sathasivum K., Sellar M., Cozens B., Harper A., Hetherington C., et al. (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506.PubMedCrossRefGoogle Scholar
  5. Sakai N., Inui K., Tatsumi N., Fukushima H., Nishigaki T., Taniike M., et al. (1996) Molecular cloning and expression of cDNA for murine galactocerebrosidase and mutation analysis of the twitcher mouse, a model of Krabbe’s disease. J. Neurochem. 66, 1118–1124.PubMedCrossRefGoogle Scholar


  1. Conzelmann E. and Sandhoff K. (1983) Partial enzyme deficiencies; residual activities and the development of neurological disorders. Dev. Neurosci. 6, 75–71.Google Scholar
  2. Linekugel P., Michel S., Conzelmann E., and Sandhoff K. (1992) Quantitative correlation between the residual activity of β-hexosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease. Hum. Genet. 88, 513–523.Google Scholar

Additional References

  1. Miyataka T. and Suzuki, K. (1972) Globoid cell leukodystrophy: Additional deficiency of psychosine galactosidase. Biochem. Biophys. Res. Commun. 48, 538–543.CrossRefGoogle Scholar
  2. Suzuki K. and Suzuki K. (1995). The twitcher mouse: A model for Krabbe disease and for experimental therapies. Brain Pathol. 5, 249–258.PubMedGoogle Scholar

Psychosine Hypothesis

  1. Kobayashi T., Yamanaka T., Jacobs J. M., Teixeira F., and Suzuki K. (1980) The twitcher mouse: An enzymatically authentic model of human globoid cell leukodystrophy (Krabbe disease). Brain Res. 202, 479–483.PubMedCrossRefGoogle Scholar
  2. Suzuki K. (1998) Twenty-five years of the psychosine hypothesis: A personal perspective of its history and present status. Neurochem. Res. in press.Google Scholar


  1. Chen Y. Q., Rafi M. A., and Wenger D. A. (1993) Cloning and expression of DNA encoding human galactocerebrosidase, the enzyme deficient in globoid cell leukodystrophy. Hum. Mol. Genet. 2, 1841–1845.PubMedCrossRefGoogle Scholar
  2. Victoria T., Rafi M. A., and Wenger D. A. (1996) Cloning of the canine GALC cDNA and identification of the mutation causing GLD in West Highland White and Cairn Terriers. Genomics 33, 457–462.PubMedCrossRefGoogle Scholar
  3. Luzi P., Rafi A. M., Victoria T., Baskin G. B., and Wenger D. A. (1997) Characterization of the rhesus monkey GAL-cDNA and identification of the mutation causing GLD (Krabbe disease) in this primate. Genomics 42, 319–324.PubMedCrossRefGoogle Scholar


  1. Lazarow P. B. and Moser H. W. (1994) Disorders of peroxisome biogenesis, in The Metabolic and Molecular Basis of Inherited Disease (Scriver C R., Bean A. L., Sly W. S., and Valle D., eds.), McGraw Hill, New York, pp. 2287–2324.Google Scholar
  2. Moser A. B., Rasmussen M., and Naidu S. (1995) Phenotype of patients with peroxisomal disorders subdivided into sixteen complementation groups. J. Pediatr. 127, 13–22.PubMedCrossRefGoogle Scholar


  1. Hess B., Saftig P., Hartman D., Coenen R., Lullmann-Rauch R., Goebel H. H., et al. (1996) Phenotype of arylsulfatase A-deficient mice: Relationship to human metachromatic leukodystrophy Proc. Natl. Acad. Sci. USA 93, 14,821–14,826.Google Scholar


  1. Kobayashi T., Shinnoh N., Kondo A., and Yameda T. (1997) Adrenoleukodystrophy protein-deficient mice represent abnormality of very long chain fatty acid metabolism. Biochem. Biophys. Res. Commun. 232, 631–636.PubMedCrossRefGoogle Scholar


  1. Brandon E. P., Idzerda R. L., and McKnight G. S. (1995). Knockouts. Targeting the mouse genomie: a compendium of knockouts (Part 1). Curr. Biol. 5, 625–634.PubMedCrossRefGoogle Scholar
  2. Kennedy M., Rowland S., Miller A., Morris C., Neville L., Dodd A., et al. (1996). Structure and location of the murine adrenoleukodystrophy gene. Genomics 32, 395–400.PubMedCrossRefGoogle Scholar
  3. Kobayashi T., Shinnoh N., Kondo A., and Yamada T. (1997). Adrenoleukodystrophy protein-deficient mice represent abnormality of very long chain fatty acid metabolism. Biochem. Biophys. Res. Commun. 232, 631–636.PubMedCrossRefGoogle Scholar
  4. Mosser J., Douar A., Sarde C., Kioschis P., Feil R., Moser H., et al. (1993). Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature 361, 726–730.PubMedCrossRefGoogle Scholar
  5. Sarde C.-O., Thomas J., Sadoulet H., Garnier J.-M., and Mandel J.-L. (1994). cDNA sequence of Aldgh, the mouse homolog of the X-linked adrenoleukodystrophy gene. Mammalian Genome 5 810–813.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1999

Authors and Affiliations

  • Kunihiko Suzuki

There are no affiliations available

Personalised recommendations