Journal of Molecular Neuroscience

, Volume 11, Issue 3, pp 209–221 | Cite as

An immortalized, type-1 astrocyte of mescencephalic origin source of a dopaminergic neurotrophic factor

  • David M. Panchision
  • Patricia A. Martin-DeLeon
  • Takao Takeshima
  • Jane M. Johnston
  • Kotaro Shimoda
  • Pantelis Tsoulfas
  • Ronald D. G. McKay
  • John W. Commissiong


Rat embryonic d 14 (E14) mesencephalic cells, 2.5% of which are glioblasts, were incubated in medium containing 10% of fetal bovine serum for 12 h and subsequently expanded in a serum-free medium using basic fibroblast growth factor (bFGF) as the mitogen. On a single occasion, after more than 15 d in culture, several islets of proliferating, glial-like cells were observed in one dish. The cells, when isolated and passaged, proliferated rapidly in either a serum-free or serum-containing growth medium. Subsequent immunocytochemical analysis showed that they stained positive for GFAP and vimentin, and negative for A2B5, O4, GalC, and MAP2. Serum-free conditioned medium (CM) prepared from these cells caused a fivefold increase in survival and promoted neuritic expansion of E14 mesencephalic dopaminergic neurons in culture. These actions are similar to those exerted by CM derived from primary, mesencephalic type-1 astrocytes. The pattern of expression of the region-selective genes; wnt-1, en-1, showed that 70% of the cells were heteroploid, and of these, 50% were tetraploid. No apparent decline in proliferative capacity has been observed after 25 passages. The properties of this cell line, named ventral mesencephalic cell line one (VMCL1), are consistent with those of an immortalized, type-1 astrocyte. The mesencephalic origin of the cell line, and the pattern and potency of the neurotrophic activity exerted by the CM, strongly suggest that the neurotrophic factor(s) identified are novel, and will likely be strong candidates with clinical utility for the treatment of Parkinson’s disease.

Index Entries

Conditioned medium dopaminergic neurons gene expression analysis immunocytochemistry karotype neurodegenerative diseases neuroprotection Parkinson’s disease tissue culture ventral mescencephalon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barde Y.-A. (1989) Trophic factors and neuronal survival. Neuron 2, 1525–1534.PubMedCrossRefGoogle Scholar
  2. Barde Y.-A. (1994) Neurotrophic factors: an evolutionary perspective. J. Neurobiol. 25, 1329–1333.PubMedCrossRefGoogle Scholar
  3. Bello M. J. and Rey J. A. (1990) Chromosome aberrations in metastatic ovarian cancer: relationship with abnormalities in primary tumors. Int. J. Cancer 45, 50–54.PubMedCrossRefGoogle Scholar
  4. Bunney B. S., Chiodo L. A., and Grace A. A. (1991) Midbrain dopamine system electrophysiological functioning: A review and new hypothesis. Synapse 9, 79–94.PubMedCrossRefGoogle Scholar
  5. Davies A. M. (1994) The role of neurotrophins in the developing nervous system. J. Neurobiol. 25, 1334–1348.PubMedCrossRefGoogle Scholar
  6. Easton R. M., Deckwerth T. L., Parsadanian A. S., and Johnson E. M. Jr. (1997) Analysis of the mechanism of loss of trophic factor dependence associated with neuronal maturation: A phenotype indistinguishable from Bax deletion. J. Neurosci. 17, 9656–9666.PubMedGoogle Scholar
  7. Ebens A., Brose K., Leonardo E. D., Hanson M. G., Jr., Bladt F., Birchmeier C., Barres B. A., and Tessier-Lavigne M. (1996) Hepatocyte growth factor scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons. Neuron 17, 1157–1172.PubMedCrossRefGoogle Scholar
  8. Engele J. and Bohn M. C. (1991) The neurotrophic effects of fibroblast growth factors on dopaminergic neurons in vitro are mediated by mesencephalic glia. J. Neurosci. 11, 3070–3078.PubMedGoogle Scholar
  9. Engele J., Rieck H., Choi-Lundberg D., and Bohn M. C. (1996) Evidence for a novel neurotrophic factor for dopaminergic neurons secreted from mesencephalic glial cell lines. J. Neurosci. Res. 43, 576–586.PubMedCrossRefGoogle Scholar
  10. Farkas L. M., Suter-Crazzolara C., and Unsicker K. (1997) GDNF induces the calretinin phenotype in cultures of embryonic striatal neurons. J. Neurosci. Res. 50, 361–372.PubMedCrossRefGoogle Scholar
  11. Ferrer I., López E., Pozas E., Ballabriga J., and Martí, E. (1988) Multiple neurotrophic signals converge in surviving CA1 neurons of the gerbil hippocampus following transient forebrain ischemia. J. Comp. Neurol. 394, 416–430.CrossRefGoogle Scholar
  12. Garcia-Abreu J., Cavalcante L. A., and Neto V. M. (1995) Differential patterns of laminin expression in lateral and medial midbrain glia. Neuroreport 6, 761–764.PubMedCrossRefGoogle Scholar
  13. Gaul G. and Lübbert H. (1992) Cortical astrocytes activated by basic fibroblast growth factor secrete molecules that stimulate differentiation of mesencephalic dopaminergic neurons. Proc. R. Soc. Lond. B. 249, 57–63.CrossRefGoogle Scholar
  14. Giess M. C. and Weber M. J. (1984) Acetylcholine metabolism in rat spinal cord cultures: regulation by a factor involved in the determination of the neurotransmitter phenotype of sympathetic neurons. J. Neurosci. 4, 1442–1452.PubMedGoogle Scholar
  15. Gorter A., van de Griend R. J., van Eendenburg J. D., Haasnoot W. H., and Fleuren G. J. (1993) Production of bi-specific monoclonal antibodies in a hollow-fiber bioreactor. J. Immunol. Meth. 161, 145–150.CrossRefGoogle Scholar
  16. Grace A. A. (1991) Regulation of spontaneous activity and oscillatory spike firing in rat midbrain dopamine neurons recorded in vitro. Synapse 7, 221–234.PubMedCrossRefGoogle Scholar
  17. Gray C. W. and Patel A. J. (1992) Characterization of a neurotrophic factor produced by cultured astrocytes involved in the regulation of subcortical cholinergic neurons. Brain Res. 574, 257–265.PubMedCrossRefGoogle Scholar
  18. Hamburger V., Brunso-Bechtold J., and Yip J. (1981) Neuronal death in the spinal ganglia of the chick embryo and its reduction by nerve growth factor. J. Neurosci. 1, 60–71.PubMedGoogle Scholar
  19. Hefti F. (1994) Neurotrophic factor therapy for nervous system degenerative diseases. J. Neurobiol. 25, 1418–1435.PubMedCrossRefGoogle Scholar
  20. Henderson C. E., Camu W., Mettling C., Gouin A., Poulsen K., Karihaloo M., Rullamas J., Evans, T., McMahon S. B., Armanini M. P., Berkemeier L., Phillips H. S., and Rosenthal A. (1993) Neurotrophins promote motor neuron survival and are present in embryonic limb bud. Nature 363, 266–270.PubMedCrossRefGoogle Scholar
  21. Johnson J. E., Qin-Wei Y., Prevette D., and Oppenheim R. W. (1995) Brain-derived proteins that rescue spinal motoneurons from cell death in the chick embryo: comparisons with target-derived and recombinant factors. J. Neurobiol. 27, 573–589.PubMedCrossRefGoogle Scholar
  22. Joyner A. L. (1996) Engrailed, Wnt and Pax genes regulate midbrain-hindbrain development. Trends Genet. 12, 15–20.PubMedCrossRefGoogle Scholar
  23. Junier M. P., Suzuki F., Onteniente B., and Peschanski M. (1994) Target-deprived CNS neurons express the NGF gene while reactive glia around their axonal terminals contain low and high affinity NGF receptors. Mol. Brain Res. 24, 247–260.PubMedCrossRefGoogle Scholar
  24. Korsching S. (1993) The neurotrophic factor concept: a re-examination. J. Neurosci. 13, 2739–2748.PubMedGoogle Scholar
  25. Lamb A. H. (1979) Evidence that some developing limb motoneurons die for reasons other than peripheral competition. Dev. Biol. 71, 8–21.PubMedCrossRefGoogle Scholar
  26. Lamb A. H. (1981a) Selective bilateral motor innervation in Xenopus tadpoles with one hind limb. J. Embryol. Exp. Morphol. 65, 149–163.PubMedGoogle Scholar
  27. Lamb A. H. (1981b) Target dependency of developing motoneurons in Xenopus laevis. J. Comp. Neurol. 203, 157–171.PubMedCrossRefGoogle Scholar
  28. Lau Y. S., Hao R. Y., Fung Y. K., Fu L. S., Bishop J. F., Pfeiffer R. F., and Mouradian M. M. (1998) Modulation of nigrostriatal dopaminergic transmission by antisense oligodeoxynucleotide against brain-derived neurotrophic factor. Neurochem. Res. 23, 525–532.PubMedCrossRefGoogle Scholar
  29. LaVail M. M., Unoki K., Yasumura D., Matthes M. T., Yancopoulos G. D., and Steinberg R. H. (1992) Multiple growth factors, cytokines, and neurotrophins rescue photoreceptors from the damaging effects of constant light. Proc. Natl. Acad. Sci. USA 89, 11,249–11,253.CrossRefGoogle Scholar
  30. Levi-Montalcini R. (1972) The morphological effects of immunosympathectomy, Immunosympathectomy (Steiner G. and Schonbaum E., eds.), Elsevier, Amsterdam, pp. 55–78.Google Scholar
  31. Li L., Oppenheim R. W., Lei M., and Houenou L. J. (1994) Neurotrophic agents prevent motoneuron death following sciatic nerve section in the neonatal mouse. J. Neurobiol. 25, 759–766.PubMedCrossRefGoogle Scholar
  32. Lin L.-F. H., Doherty D. H., Lile J. D., Bektesh S., and Collins F. (1993) GDNF: A glial cell-line derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130–1132.PubMedCrossRefGoogle Scholar
  33. Lindsay R. M., Altar C. A., Cedarbaum J. M., Hyman C., and Wiegand S. J. (1993) The therapeutic potential of neurotrophic factors in the treatment of Parkinson’s disease. Exp. Neurol. 124, 103–118.PubMedCrossRefGoogle Scholar
  34. Lubischer J. L. and Arnold A. P. (1995) Evidence for target regulation of the development of androgen sensitivity in rat spinal motoneurons. Dev. Neurosci. 17, 106–117.PubMedGoogle Scholar
  35. McMahon A. P. and Bradley A. (1990) The Wnt-1 (int-1) proto-oncogene is required for development of a large portion of the mouse brain. Cell 62, 1073–1085.PubMedCrossRefGoogle Scholar
  36. McMahon A. P., Joyner A. L., Bradley A., and McMahon J. A. (1992) The midbrain hindbrain phenotype of wnt-1-/wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell 69, 581–595.PubMedCrossRefGoogle Scholar
  37. Mena M. A., Casarejos M. J., Carazo A., DePaino C. L., and Yébenes J. G. (1996) Glia conditioned medium protects fetal rat midbrain neurones in culture from L-DOPA toxicity. Neuroreport 7, 441–445.PubMedCrossRefGoogle Scholar
  38. Millen K. J., Wurst W., Herrup K., and Joyner A. L. (1994) Abnormal embryonic cerebellar development and patterning of postnatal foliation in two mouse engrailed-2 mutants. Development 120, 695–706.PubMedGoogle Scholar
  39. Milligan C. E., Oppenheim R. W., and Schwartz L. M. (1994) Motoneurons deprived of trophic support in vitro require new gene expression to undergo programmed cell death. J. Neurobiol. 25, 1005–1016.PubMedCrossRefGoogle Scholar
  40. Mitsumoto H., Ikeda K., Klinkosz B., Cedarbaum J. M., Wong V., and Lindsay R. M. (1994) Arrest of motor neuron disease in wobbler mice cotreated with CNTF and BDNF. Science 265, 1107–1110.PubMedCrossRefGoogle Scholar
  41. Mou K., Hunsberger C. L., Cleary J. M., and Davis R. L. (1997) Synergistic effects of BDNF and NT-3 on postnatal spiral ganglion neurons. J. Comp. Neurol. 386, 529–539.PubMedCrossRefGoogle Scholar
  42. Nishi R. (1994) Target-derived molecules that influence the development of neurons in the avian ciliary ganglion. J. Neurobiol. 25, 612–619.PubMedCrossRefGoogle Scholar
  43. O’Malley E. K., Sieber B.-A., Black I. B., Dreyfus C. F. (1992) Mesencephalic type I astrocytes mediate the survival of substantia nigra dopaminergic neurons in culture. Brain Res. 582, 65–70.PubMedCrossRefGoogle Scholar
  44. O’Malley E. K., Sieber B.-A., Morrison R. S., Black I. B., and Dreyfus C. F. (1994) Nigral type I astrocytes release a soluble factor that increases dopaminergic neuron survival through mechanisms distinct from basic fibroblast growth factor. Brain Res. 647, 83–90.PubMedCrossRefGoogle Scholar
  45. Oppenheim R. W. (1996) The concept of uptake and retrograde transport of neurotrophic molecules during development: History and present status. Neurochem. Res. 21, 769–777.PubMedCrossRefGoogle Scholar
  46. Perrimon N. (1994) The genetic basis of patterned baldness in Drosophila. Cell 76, 781–784.PubMedCrossRefGoogle Scholar
  47. Robinson C. J. (1996) Neurotrophic factors—Novel therapeutics. Trends Biotechnol. 14, 451,452.CrossRefGoogle Scholar
  48. Schotzinger R., Yin X., Landis S. (1994) Target determination of neurotransmitter phenotype in sympathetic neurons. J. Neurobiol. 25, 620–639.PubMedCrossRefGoogle Scholar
  49. Sendtner M., Götz R., Holtmann B., Escary J. L., Masu Y., Carroll P., Wolf E., Brem G., Brulet P., and Thoenen H. (1996) Cryptic physiological trophic support of motoneurons by LIF revealed by double gene targeting of CNTF and LIF. Curr. Biol. 6, 686–694.PubMedCrossRefGoogle Scholar
  50. Shimoda K., Sauve Y., Marini A., Schwartz J. P., and Commissiong J. W. (1992) A high percentage yield of tyrosine hydroxylase-positive cells from rat E14 mesencephalic cell culture. Brain Res. 586, 319–331.PubMedCrossRefGoogle Scholar
  51. Sofroniew M. V. (1996) Nerve growth factor, aging and Alzheimer’s disease. Alzheimer’s Res. 2, 7–14.Google Scholar
  52. Song D.-K., Chalepakis G., Gruss P., and Joyner A. L. (1996) Two pax-binding sites are required for early embryonic brain expression of an engrailed-2 transgene. Development 122, 627–635.PubMedGoogle Scholar
  53. Tafreshi A. P., Zhou X. F., and Rush R. A. (1998) Endogenous nerve growth factor and neurotrophin-3 act simultaneously to ensure the survival of postnatal sympathetic neurons in vivo. Neuroscience 83, 373–380.PubMedCrossRefGoogle Scholar
  54. Takeshima T., Johnston J. M., and Commissiong J. W. (1994a) Mesencephalic type 1 astrocytes rescue dopaminergic neurons from death induced by serum deprivation. J. Neurosci. 14, 4769–4779.PubMedGoogle Scholar
  55. Takeshima T., Johnston J. M., and Commissiong J. W. (1994b) Oligodendrocyte-type-2 astrocyte (O-2A) progenitors increase the survival of rat mesencephalic, dopaminergic neurons from death induced by serum deprivation. Neurosci. Lett. 166, 178–182.PubMedCrossRefGoogle Scholar
  56. Takeshima T., Shimoda K., Sauve Y., and Commission J. W. (1994c) Astrocyte-dependent and independent phases of the development and survival of rat embryonic day 14 mesencephalic, dopaminergic neurons in culture. Neuroscience 60, 809–823.PubMedCrossRefGoogle Scholar
  57. Takeshima T., Shimoda K., Johnston J. M., and Commissiong J. W. (1996) Standardized methods to bioassay neurotrophic factors for dopaminergic neurons. J. Neurosci. Meth. 67, 27–41.CrossRefGoogle Scholar
  58. Thomas K. R. and Capecchi M. R. (1990) Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellum development. Nature 346, 847–850.PubMedCrossRefGoogle Scholar
  59. Unoki K. and LaVail M. M. (1994) Protection of the rat retina from ischemic injury by brain-derived neurotrophic factor, cilinary neurotrophic factor, and basic fibroblast growth factor. Invest. Ophthalmol. Vis. Sci. 35, 907–915.PubMedGoogle Scholar
  60. Urbanek P., Wang Z.-Q., Fetka I., Wagner E. F., and Busslinger M. (1994) Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BASP. Cell 79, 901–912.PubMedCrossRefGoogle Scholar
  61. Vogel K. S. and Davies A. M. (1991) The duration of neurotrophic factor independence in early sensory neurons is matched to the time course of target field innervation. Neuron 7, 819–830.PubMedCrossRefGoogle Scholar
  62. Weiss-Wunder L. T. and Chesselet M.-F. (1991) Subpopulations of mesencephalic dopaminergic neurons express different levels of tyrosine hydroxylase messenger RNA. J. Comp. Neurol. 303, 478–488.PubMedCrossRefGoogle Scholar
  63. Wurst W., Auerbach A. B., and Joyner A. L. (1994) Multiple developmental defects of Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development 120, 2065–2075.PubMedGoogle Scholar
  64. Yamada T., McGeer P. L., Baimbridge K. G., and McGeer E. G. (1990) Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res. 526, 303–307.PubMedCrossRefGoogle Scholar
  65. Zhou J., Bradford H. F., and Stern G. M. (1994) The stimulatory effect of brain-derived neurotrophic factor on dopaminergic phenotype expression of embryonic rat cortical neurons in vitro. Dev. Brain Res. 81, 318–324.CrossRefGoogle Scholar
  66. Zinman L. H., Lawrance G., Wang W., Verge V. M. K., Dow K. E., Maurice D. H., Richardson P. M., and Riopelle R. J. (1998) Collaborative and reciprocal effects of ciliary neurotrophic factor and nerve growth factor on the neuronal phenotype of human neuroblastoma cells. J. Neurochem. 70, 1411–1420.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1999

Authors and Affiliations

  • David M. Panchision
    • 1
  • Patricia A. Martin-DeLeon
    • 2
  • Takao Takeshima
    • 3
  • Jane M. Johnston
    • 4
  • Kotaro Shimoda
    • 5
  • Pantelis Tsoulfas
    • 1
  • Ronald D. G. McKay
    • 1
  • John W. Commissiong
    • 1
  1. 1.National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesda
  2. 2.Division of Molecular Biology, Department of Biological SciencesUniversity of DelawareNewark
  3. 3.Division of Neurology, Institute of Neurological SciencesTottori University School of MedicineYonagoJapan
  4. 4.Department of Neurological Surgery, Henry and Lucy Moses Division, Montefiore Medical CenterUniversity Hospital for the Albert Einstein College of MedicineBronx
  5. 5.Division of NeurologyNational Nishi Tottori HospitalTottoriJapan

Personalised recommendations