Run-on gene transcription in human neocortical nuclei

Inhibition by nanomolar aluminum and implications for neurodegenerative disease
  • Walter J. Lukiw
  • Hector J. LeBlanc
  • Larry A. Carver
  • Donald R. C. McLachlan
  • Nicolas G. Bazan


The incorporation of [α-32P]-uridine triphosphate into DNA transcription products was examined in short post-mortem interval (PMI) human brain neocortical nuclei (n, 22; PMI, 0.5–24 h) using run-on gene transcription. Reverse Northern dot-blot hybridization of newly synthesized RNA against either total cDNA or Alu repetitive DNA indicated that human brain neocortical nuclei of up to 4-h PMI were efficient in incorporating radiolabel into new transcription products, after which there was a graded decline in de novo RNA biosynthetic capacity. To test the effects of 0–3000 nM concentrations of ambient aluminum on RNA polymerase I (RNAP I) and RNA polymerase II (RNAP II) transcription, dot blots containing 0.5, 1.0, 2.0, and 5.0 µg of DNA for (1) the human-specific Alu repetitive element (2) the neurofilament light (NFL) chain, and (3) glial fibrillary acidic protein (GFAP) were Northern hybridized against newly synthesized radiolabeled total RNA. These DNAs represent heterogeneous nuclear RNA (hnRNA), neuronal-, and glial-specific markers, respectively. We report here a dose-dependent repression in the biosynthetic capabilities of brain RNAP II in the range of 50–100 nM aluminum, deficits similar to those previously described using a rabbit neocortical nuclei transcription system and at concentrations that have been reported in Alzheimer’s disease (AD) euchromatin. Transcription from RNAP II and the neuron-specific NFL gene in the presence of aluminum was found to be particularly affected. These findings support the hypothesis that brain gene transcription in the presence of trace amounts of ambient aluminum impairs mammalian brain DNA to adequately read out genetic information.

Index Entries

Alu aluminum Alzheimer’s disease (AD) brain transcription GFAP NFL run-on gene transcription RNA polymerase I (RNAP I) RNA polymerase II (RNAP II) 


  1. Ahmad R., Naoui M., Neault J. F., Diamantoglou S., and Tajmir-Riahi H. A. (1996) An FTIR spectroscopic study of calf-thymus DNA complexation with Al(III) and Ga(III) cations. J. Biomol. Struct. Dyn. 13, 795–802.PubMedGoogle Scholar
  2. Alzheimer A., Stelzmann R. A., Schnitzlein H. N., and Murtagh F. R. (1995) An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde.” Clin. Anat. 8, 429–431.PubMedCrossRefGoogle Scholar
  3. Amano R., Oishi S., Enomoto S., and Ambe F. (1996) Biodistribution of trace elements in normal, aluminum overloaded and cadmium overloaded mice. Ann. Clin. Lab. Sci. 26, 531–541.PubMedGoogle Scholar
  4. Bertholf R. L., Herman M. M., Savory J., Carpenter R. M., Sturgill B. C., Katsetos C. D., Vandenberg S. R., and Wills M. R. (1989) A long-term intravenous model of aluminum maltol toxicity in rabbits: tissue distribution, hepatic, renal and neuronal cytoskeletal changes associated with systemic exposure. Toxicol. Appl. Pharmacol. 98, 58–74.PubMedCrossRefGoogle Scholar
  5. Bolla K., Briefel G., Spector D., Schwartz B. S., Wieler L., Herron J., and Gimenez L. (1992) Neurocognitive effects of aluminum. Arch. Neurol. 49, 1021–1026.PubMedGoogle Scholar
  6. Bouras C., Giannakopoulos P., Good P. F., Hsu A., Hof P. R., and Perl D. P. (1997) A laser microprobe mass analysis of brain aluminum and iron in dementia pugilistica: comparison with Alzheimer’s disease. Eur. Neurol. 38, 53–58.PubMedGoogle Scholar
  7. Chen J. T., Lane M. A., and Clark D. P. (1996) Inhibitors of the polymerase chain reaction in Papanicolaou stain. Removal with a simple destaining procedure. Acta Cytol. 40, 873–877.PubMedGoogle Scholar
  8. Chomczynski P. (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15, 532–536.PubMedGoogle Scholar
  9. Crapper D. R., Quittkat S., Krishnan S. S., Dalton A. J., and De Boni, U. (1980) Intranuclear aluminum content in Alzheimer’s disease, dialysis encephalopathy and experimental aluminum encephalopathy. Acta Neuropath. 50, 19–24.PubMedCrossRefGoogle Scholar
  10. Crapper McLachlan D. R., Lukiw W. J., Mizzen C. A., and Kruck T. P. A. (1988) Chromatin structure in Alzheimer’s disease: Effect on 5′ leader sequence for NF-L gene and the role of aluminum. Alzheimer’s Dis. Related Disord. 2, 3–10.Google Scholar
  11. De Boni U. and McLachlan D. R. (1980) Senile dementia and Alzheimer’s disease: a current view. Life Sci. 27, 1–14.PubMedCrossRefGoogle Scholar
  12. Del Castillo P., Llorente A. R., Gomez A., Gosalvez J., Goyanes V. J., and Stockert J. C. (1990) New fluorescence reactions in DNA cytochemistry. 2. Microscopic and spectroscopic studies on fluorescent aluminum complexes. Anal. Quant. Cytol. Histol. 12, 11–20.PubMedGoogle Scholar
  13. Ehmann W. D. and Markesbery W. R. (1994) A multi-technique approach to the study of aluminum in Alzheimer’s disease brain. Life Chem. Rep. 11, 11–28.Google Scholar
  14. Estable-Puig R. F. de, Estable-Puig J. F. de, and Romero C. (1971). Nuclear changes in glial cells after aluminum hydroxide. Virchows Arch. B. Cell Pathol. 8, 267–273.PubMedGoogle Scholar
  15. Fei H., and Drake T. A. (1993). A rapid nuclear run-off transcription assay. Biotechniques 15, 838.PubMedGoogle Scholar
  16. Forbes W. F. and Gentleman J. F. (1998) Risk factors, causality, and policy initiatives: the case of aluminum and mental impairment. Exptl. Gerontol. 33, 141–154.CrossRefGoogle Scholar
  17. Ganrot P. O. (1986) Metabolism and possible health effects of aluminum. Environ. Health Perspect. 65, 363–441.PubMedCrossRefGoogle Scholar
  18. Gelles J. and Landick R. (1998) RNA polymerase as a molecular motor. Cell 93, 13–16.PubMedCrossRefGoogle Scholar
  19. Guy S. P., Jones D., Mann D. M., and Itzhaki R. F. (1991) Human neuroblastoma cells treated with aluminium express an epitope associated with Alzheimer’s disease neurofibrillary tangles. Neurosci. Lett. 121, 166–168.PubMedCrossRefGoogle Scholar
  20. Hanas, J. S. and Gunn C. G. (1996) Inhibition of transcription factor IIIA-DNA interaction by xenobiotic metal ions. Nucleic Acids Res. 24, 924–930.PubMedCrossRefGoogle Scholar
  21. Hantson P., Mahieu P., Gersdorff M., Sindic C., and Lauwerys R. (1995) Fatal encephalopathy after otoneurosurgery procedure with an aluminum-containing biomaterial. J. Toxicol. Clin. Toxicol. 33, 645–648.PubMedCrossRefGoogle Scholar
  22. Hoang-Xuan K., Perrotte P., Dubas F., Philippon J., and Poisson F. M. (1996) Myoclonic encephalopathy after exposure to aluminum. Lancet 347, 910–911.PubMedCrossRefGoogle Scholar
  23. Hoffman P. N., Cleveland D. W., Griffin J. W., Landes P. W., Cowan N. J., and Price D. L. (1987) Neurofilament gene expression; a major determinant of axonal caliber. Proc. Natl. Acad. Sci. USA 84, 3472–3476.PubMedCrossRefGoogle Scholar
  24. Itzhaki R. (1994) The aetiology of Alzheimer’s disease, in Chapter 3, Molecular and Cell Biology of Neuropsychiatric Diseases, vol. 3 (Owen F. and Itzhaki R., eds.), Chapman and Hall, London, pp. 55–91.Google Scholar
  25. Jeantet A. Y., Ballan-Dufrancais C., Petter C., and Truchet M. (1992) Mechanisms of cellular detoxication, nuclear aluminum concentration and hepatocyte protection after experimental overload in rats. C. R. Acad. Sci. III 315, 379–386.PubMedGoogle Scholar
  26. Julka D., Vasishta R. K., and Gill K. D. (1996) Distribution of aluminum in different brain regions and body organs of rat. Biol. Trace Elem. Res. 52, 181–192.PubMedGoogle Scholar
  27. Kadota T. and Kadota K. (1978) Neurofilament hypertrophy induced in the rabbit spinal cord after intracisternal injection of aluminum chloride. J. Toxicol. Sci. 3, 57–67.PubMedGoogle Scholar
  28. Karlik S. J., Chong A. A., Eichhorn G. L., and De Boni U. (1989) Reversible toroidal compaction of DNA by aluminum. Neurotoxicology 10, 167–176.PubMedGoogle Scholar
  29. Karlik S. J., Eichhorn G. L., Lewis P. N., and Crapper D. R. (1980) Interaction of aluminum species with deoxyribonucleic acid. Biochemistry 19, 5991–5998.PubMedCrossRefGoogle Scholar
  30. Kasas, S., Thomson N. H., Smith B. L., Hansma H. G., Zhu X., Guthold, M., Bustamante C., Kool E. T., Kashlev M., and Hansma P. K. (1997) Escherichia coli RNA polymerase activity observed using atomic force microscopy. Biochemistry 36, 461–468.PubMedCrossRefGoogle Scholar
  31. Kobayashi S., Hirota N., Saito K., and Utsuyama M. (1987) Aluminum accumulation in tangle-bearing neurons of Alzheimer’s disease with Balint’s syndrome in a long term aluminum refiner. Acta Neuropathol. 74, 47–52.PubMedCrossRefGoogle Scholar
  32. Kushelevsky A., Yagil R., Alfasi Z., and Berlyne G. M. (1976) Uptake of aluminum ion by the liver. Biomedicine 25, 59,60.PubMedGoogle Scholar
  33. Lillie R. D., Donaldson P., Jirge S. K., and Pizzolato P. (1976) Iron and aluminum lakes of Gallo blue E as nuclear and metachromatic mucin stains. Stain Technol. 51, 187–192.PubMedGoogle Scholar
  34. Llorente A. R., Del Castillo P., and Stockert J. C. (1989) Aluminium binding to chromatin DNA as revealed by formation of fluorescent complexes with 8-hydroxyquinoline and other ligands. J. Microsc. 155, 227–230.PubMedGoogle Scholar
  35. Lovell M. A., Ehmann W. D., and Markesbery, W. R. (1993) Laser microprobe analysis of brain aluminum in Alzheimer’s disease. Ann. Neurol. 33, 36–42.PubMedCrossRefGoogle Scholar
  36. Lukiw W. J. (1997) Aluminum in alzheimer’s disease, in Mineral and Metal Neurotoxicology (Yasui M., Strong M., Ota K., and Verity M. A., eds.), CRC, Boca Raton, FL, pp. 113–126.Google Scholar
  37. Lukiw W. J. and McLachlan D. R. C. (1995) Neurotoxicology of aluminum, in Handbook of Neurotoxicology II: Effects and Mechanisms, vol. 4 (Chang L. and Dyer R., eds.), Marcel Dekker, New York, 105–142.Google Scholar
  38. Lukiw W. J., Bergeron C., Wong L., Kruck T. P. A., Krishnan B., and McLachlan D. R. C. (1992) Nuclear compartmentalization of aluminum in Alzheimer’s disease (AD). Neurobiol. Aging 13, 115–121.PubMedCrossRefGoogle Scholar
  39. Lukiw W. J., Kruck T. P. A., and McLachlan D. R. C. (1987) Alterations in human linker histone-DNA binding in the presence of aluminum salts in vitro and in Alzheimer’s disease. Neurotoxicology 8, 291–302.PubMedGoogle Scholar
  40. Lukiw W. J., Kruck T. P. A., and McLachlan D. R. C. (1989a) Linker histone-DNA complexes; enhanced stability in the presence of aluminum lactate and implications for Alzheimer’s disease. FEBS Lett. 253, 59–62.PubMedCrossRefGoogle Scholar
  41. Lukiw W. J., Kruck T. P. A., and McLachlan D. R. C. (1989b) Aluminum, intracellular liganding and the nucleus. Lancet 1, 781.PubMedCrossRefGoogle Scholar
  42. Lukiw W. J., Rogaev E. I., and Bazan N. G. (1996) Synaptic and cytoskeletal RNA message levels in sporadic Alzheimer neocortex. Alzheimer’s Res. 2, 221–227.Google Scholar
  43. Lukiw W. J., St. George-Hyslop P., and McLachlan D. R. C. (1994) Chromatin structure, nuclear aluminum and gene expression in Alzheimer’s disease, in Basic and Clinical Aspects of Neuroscience, vol. 6, Regulation of Gene Expression and Brain Function, Sandoz/Springer-Verlag, New York, pp. 31–45.Google Scholar
  44. Marcheselli V. L. and Bazan N. G. (1996) Sustained induction of prostaglandin endoperoxide synthase-2 by seizures in hippocampus. Inhibition by a platelet-activating factor antagonist. J. Biol. Chem. 271, 24,794–24,799.Google Scholar
  45. Martin R. B. (1992) Aluminium speciation in biology. Ciba Found. Symp. 169, 5–18.PubMedGoogle Scholar
  46. Muma N. A. and Singer S. M. (1996) Aluminum-induced neuropathology: transient changes in microtubule-associated proteins. Neurotoxicol. Teratol. 18, 679–690.PubMedCrossRefGoogle Scholar
  47. Muma N. A., Troncoso J. C., Hoffman P. N., Koo E. H., and Price D. L. (1988) Aluminum neurotoxicity: altered expression of cytoskeletal genes. Brain Res. 427, 115–121.PubMedGoogle Scholar
  48. Mundy W. R., Freudenrich T. M., and Kodavanti P. R. (1997) Aluminum potentiates glutamate-induced calcium accumulation and iron-induced oxygen free radical formation in primary neuronal cultures. Mol. Chem. Neuropathol. 32, 41–57.PubMedGoogle Scholar
  49. Nayak P. and Chatterjee A. K. (1998) Impact of protein malnutrition on subcellular nucleic acid and protein status of brain of aluminum-exposed rats. J. Toxicol. Sci. 23, 1–14.PubMedGoogle Scholar
  50. Niedziela G. and Aniol A. (1983) Subcellular distribution of aluminum in wheat roots. Acta Biochim. Pol. 30, 99–105.PubMedGoogle Scholar
  51. Oikarinen J., Mannermaa R. M., Tarkka T., Yli-Mayry N., and Majamaa K. (1991) Interference of AlF4-with nucleotide and DNA binding of rat histone H1 in vitro: implications for the pathogenesis of Alzheimer’s disease. Neurosci. Lett. 132, 171–174.PubMedCrossRefGoogle Scholar
  52. Parhad I. M., Krekoski C. A., Mathew A., and Tran P. M. (1989) Neuronal gene expression in aluminum myelopathy. Cell. Mol. Neurobiol. 9, 123–138.PubMedCrossRefGoogle Scholar
  53. Perl D. P. and Pendlebury W. W. (1984) Aluminum accumulation in neurofibrillary tangle-bearing neurons of senile dementia, Alzheimer’s type: detection by intraneuronal X-ray spectrometry studies of unstained tissue sections. J. Neuropathol. Exp. Neurol. 43, 349–359.Google Scholar
  54. Perl D. P., Gajdusek D. C., Garruto R. M., Yanagihara R. T., and Gibbs C. J. (1982) Intraneuronal aluminum accumulation in amyotrophic lateral sclerosis and Parkinsonism-dementia of Guam. Science 217, 1053–1055.PubMedCrossRefGoogle Scholar
  55. Pesole G., Sbisa E., Mignotte F., and Saccone C. (1991) The branching order of mammals: phylogenetic trees inferred from nuclear and mitochondrial molecular data. J. Mol. Evolut. 33, 537–542.CrossRefGoogle Scholar
  56. Roeder R. G. and Rutter W. J. (1970) Specific nucleolar and nucleoplasmic RNA polymerases. Proc. Natl. Acad. Sci. USA 65, 675–682.PubMedCrossRefGoogle Scholar
  57. Sabouraud O., Chatel M., Menault F., Dien Peron J., Cartier F., Garre M., Gary J., and Pecker S. (1978) Progressive myoclonic encephalopathy in dialysis patients. Clinical, electroencephalographic and neuropathological study. Rev. Neurol. (Paris) 134, 575–600.Google Scholar
  58. Sanderson C., McLachlan D. R. C., and De Boni U. (1982) Inhibition of corticosterone binding in vitro, in rabbit hippocampus, by chromatin bound aluminum. Acta Neuropathol. (Berl.) 57, 249–254.CrossRefGoogle Scholar
  59. Sarkander H. I., Balb G., Schlosser H., Stoltenburg G., and Lux R. M. (1983) Blockade of neuronal brain RNA initiation sites by aluminum: a primary molecular mechanism of aluminum-induced neurofibrillary changes? in Brain Aging: Neuropathology and Neuropharmacology, (Cervos-Navarro J. and Sarkander H. I., eds.), Raven, New York, pp. 259–274.Google Scholar
  60. Schmid C. W. and Jelinek W. R. (1982) The Alu family of dispersed repetitive sequences. Science 216, 1065–1070.PubMedCrossRefGoogle Scholar
  61. Shimizu H., Mori T., Koyama M., Sekiya M., and Ooami H. (1994) A correlative study of the aluminum content and aging changes of the brain in non-demented elderly subjects. Nippon Ronen Igakkai Zasshi 31, 950–960.PubMedGoogle Scholar
  62. Singer S. M., Chambers C. B., Newfry G. A., Norlund M. A., and Muma N. A. (1997) Tau in aluminum-induced neurofibrillary tangles. Neurotoxicology 18, 63–76.PubMedGoogle Scholar
  63. Somova L. I., Missankov A., and Khan M. S. (1997) Chronic aluminum intoxication in rats: dose-dependent morphological changes. Methods Find. Exp. Clin. Pharmacol. 19, 599–604.PubMedGoogle Scholar
  64. St. George-Hyslop P. (1995) Genetic determinants of Alzheimer disease. Prog. Clin. Biol. Res. 393, 139–145.PubMedGoogle Scholar
  65. Stockert J. C. (1979) Observations on the chromatin staining by aluminum-hematoxylin. Z. Naturforsch. 34, 1285, 1286.Google Scholar
  66. Tanzi R. E., Kovacs D. M., Kim T. W., Moir R. D., Guenette S. Y., and Wasco W. (1996) The gene defects responsible for familial Alzheimer’s disease. Neurobiol. Dis. 3, 159–168.PubMedCrossRefGoogle Scholar
  67. Thompson R. J. (1973) Studies on RNA synthesis in two populations of nuclei from the mammalian cerebral cortex. J. Neurochem. 21, 19–40.PubMedCrossRefGoogle Scholar
  68. Tokutake S., Nagase H., Morisaki S., and Oyanagi S. (1995) Aluminium detected in senile plaques and neurofibrillary tangles is contained in lipofuscin granules with silicon, probably as aluminosilicate. Neurosci. Lett. 185, 99–102.PubMedCrossRefGoogle Scholar
  69. Troncoso J., March J. L., Haner M., and Aebi U. (1990) Effect of aluminum and other multivalent cations on neurofilaments in vitro: an electron microscopic study. J. Struct. Biol. 103, 2–12.PubMedCrossRefGoogle Scholar
  70. Truchet M. (1976) Demonstration by electron probe microanalysis and by ionic microanalysis of nuclear localization of aluminum of various cells. C. R. Acad. Sci. Hebd. Seances Acad. Sci. D. 282, 1785–1788.PubMedGoogle Scholar
  71. Truchet M., Jeantet A. Y., and Petter C. (1987) Cell nucleus intervention in aluminum concentration by rat liver cells. C. R. Acad. Sci. III 305, 259–263.PubMedGoogle Scholar
  72. Uemura E. (1984) Intranuclear aluminum accumulation in chronic animals with experimental neurofibrillary changes. Exp. Neurol. 85, 10–18.PubMedCrossRefGoogle Scholar
  73. Van Leeuwen F. W., de Kleijn D. P. V., van den Hurk H. H., Neubauer A., Sonnemans M. A. F., Sluijs J. A., Koycu S., Ramdjielal R. D. J., Salehi A., Martens G. J. M., Grosveld F. G., Burbach P. H., and Hol E. M. (1998) Frameshift mutants of B-amyloid precursor protein and ubiquitin-B in Alzheimers and Downs patients. Science 279, 242–247.PubMedCrossRefGoogle Scholar
  74. Walker P. R., LeBlanc J., and Sikorska M. (1989) Effects of aluminum and other cations on the structure of brain and liver chromatin. Biochemistry 28, 3911–3915.PubMedCrossRefGoogle Scholar
  75. Yasui M., Kihira T., and Ota K. (1992) Calcium, magnesium and aluminum concentrations in Parkinson’s disease. Neurotoxicology 13, 593–600.PubMedGoogle Scholar
  76. Yasui M., Ota K., and Yoshida M. (1997) Effects of low calcium and magnesium dietary intake on the central nervous system tissues of rats and calcium-magnesium related disorders in the amyotrophic lateral sclerosis focus in the Kii Peninsula of Japan. Magnes. Res. 10, 39–50.PubMedGoogle Scholar
  77. Yoshida S. (1991) Environmental factors in western Pacific foci of ALS and a possible pathogenetic role of aluminum (Al) in motor neuron degeneration. Rinsho Shinkeigaku 31, 1310–1312.PubMedGoogle Scholar
  78. Yoshida S., Mitani K., Wakayama I., Kihira T., and Yase Y. (1995) Bunina body formation in amyotrophic lateral sclerosis: a morphometric-statistical and trace element study featuring aluminum. J. Neurol. Sci. 130, 88–94.PubMedCrossRefGoogle Scholar
  79. Yumoto S., Kakimi S., Matsushima H., Ishikawa A., and Mizutani T. (1998) Aluminum accumulation in the brains of patients with Alzheimer’s disease. Abstract 1139, 6th International Conference on Alzheimer’s Disease and Related Disorders, 18–23 July, Amsterdam, The Netherlands.Google Scholar
  80. Zhang Y. (1995) Effects of aluminum chloride on the nucleus and nucleolus in root tip cells of Hordeum vulgare. Mutat. Res. 335, 137–142.PubMedGoogle Scholar
  81. Zubenko G. S., Stiffler J. S., Hughes H. B., Hurtt M. R., and Kaplan B. B. (1998) Initial results of a genome survey for novel Alzheimer’s disease risk genes: association with a locus on the X chromosome. Am. J. Med. Genet. 81, 98–107.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1998

Authors and Affiliations

  • Walter J. Lukiw
    • 1
  • Hector J. LeBlanc
    • 2
  • Larry A. Carver
    • 2
  • Donald R. C. McLachlan
    • 3
  • Nicolas G. Bazan
    • 1
  1. 1.Neuroscience Center and Department of OphthalmologyLouisiana State University Medical CenterNew Orleans
  2. 2.Brain Bank at the LSU Medical Center, Neuroscience Center of ExcellenceLouisiana State University School of MedicineNew Orleans
  3. 3.Centre for Research in Neurodegenerative DiseaseUniversity of TorontoTorontoCanada

Personalised recommendations