Skip to main content
Log in

β-amyloid and endoplasmic reticulum stress reponses in primary neurons

Effects of drugs that interact with the cytoskeleton

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

In vitro studies designed to probe the cellular mechanisms underlying β-amyloid (Aβ) toxicity in neurons have implicated several processes, including hyperphosphorylation of the microtubule (MT)-associated protein tau, loss of MT stability, and increased cytosolic calcium levels. Given that Alzheimer's disease involves accumulation of aggregates of two different proteins, the potential involvement of the unfolded protein response (UPR) and endoplasmic reticulum (ER) dysfunction has been suggested to lead to cell death. The relationship between these apparently divergent factors and pathways in Aβ toxicity is still unclear. In these studies we investigated the relationship between MT stability and the ER stress response in primary neurons exposed to toxic Aβ peptides in culture. In addition, nocodazole (ND) was used to determine if direct disruption of MT organization activated the UPR. Pretreatment of neurons with MT-stabilizing drugs paclitaxel (Taxol) and epothilone A prevented the induction of three indicators of the UPR induced by Aβ, ND, and thapsigargin, a compound known to inhibit the sarco-ER Ca2+-ATPase and deplete ER calcium stores, resulting in initiation of the UPR. In addition, treatment with MT-stabilizing drugs blocked cell death and the cytoskeletal disorganization induced by these insults. The results suggest that loss of cytoskeletal integrity is a very early step in the response to a variety of toxic stimuli and that preservation of MT stability might be important in preventing the induction of ER dysfunction and subsequent cell death by Aβ in neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthony S. G., Schipper H. M., Tavares R., Hovanesian V., Cortez S. C., Stopa E. G., and Johanson C. E. (2003) Stress protein expression in the Alzheimer-diseased choroid plexus. J. Alzheimers Dis. 5, 171–177.

    PubMed  CAS  Google Scholar 

  • Blalock E. M., Geddes J. W., Chen K. C., Porter N. M., Markesbery W. R., and Landfield P. W. (2004) Incipient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc. Natl. Acad. Sci. U.S.A. 101, 2173–2178.

    Article  PubMed  CAS  Google Scholar 

  • Bollag D. M., McQueney P. A., Zhu J., Hensens O., Koupal L., Liesch J., et al. (1995) Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res. 55, 2325–2333.

    PubMed  CAS  Google Scholar 

  • Burke W.J., Raghu G., and Strong R. (1994) Taxol protects against calcium-mediated death of differentiated rat pheochromocytoma cells. Life Sci. 55, 313–319.

    Article  PubMed  CAS  Google Scholar 

  • Busciglio J., Lorenzo A., Yeh J., and Yankner B. A. (1995) Beta-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 14, 879–888.

    Article  PubMed  CAS  Google Scholar 

  • Chapman R., Sidrauski C., and Walter P. (1998) Intracellular signaling from the endoplasmic reticulum to the nucleus. Annu. Rev. Cell Dev. Biol. 14, 459–485.

    Article  PubMed  CAS  Google Scholar 

  • Darios F., Muriel M. P., Khondiker M. E., Brice A., and Ruberg M. (2005) Neurotoxic calcium transfer from endoplasmic reticulum to mitochondria is regulated by cyclin-dependent kinase 5-dependent phosphorylation of tau. J. Neurosci. 25, 4159–4168.

    Article  PubMed  CAS  Google Scholar 

  • Divinski I., Mittelman L., and Gozes I. (2004) A femtomolar acting octapeptide interacts with tubulin and protects astrocytes against zinc intoxication. J. Biol. Chem. 279, 28,531–28,538.

    Article  CAS  Google Scholar 

  • Ghribi O., Herman M. M., DeWitt D. A., Forbes M. S., and Savory J. (2001) Abeta(1–42) and aluminum induce stress in the endoplasmic reticulum in rabbit hippocampus, involving nuclear translocation of gad d 153 and NF-kappaB. Brain Res. Mol. Brain Res. 96, 30–38.

    Article  PubMed  CAS  Google Scholar 

  • Goedert M. (1998) Neurofibrillary pathology of Alzheimer's disease and other tauopathies. Prog. Brain Res. 117, 287–306.

    Article  PubMed  CAS  Google Scholar 

  • Gozes I. and Divinski I. (2004) The femtomolar-acting NAP interacts with microtubules: novel aspects of astrocyte protection. J. Alzheimers Dis. 6, S37–41.

    Google Scholar 

  • Grace E. A., Rabiner C. A., and Busciglio J. (2002) Characterization of neuronal dystrophy induced by fibrillar amyloid beta: implications for Alzheimer's disease. Neuroscience 114, 265–273.

    Article  PubMed  CAS  Google Scholar 

  • Guo Q., Furukawa K., Sopher B. L., Pham D. G., Xie J., Robinson N., et al. (1996) Alzheimer's PS-1 mutation perturbs calcium homeostasis and sensitizes PC12 cells to death induced by amyloid beta-peptide. Neuroreport 8, 379–383.

    Article  PubMed  CAS  Google Scholar 

  • Guo Q., Sopher B. L., Furukawa K., Pham D. G., Robinson N., Martin G. M., and Mattson M. P. (1997) Alzheimer's presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid beta-peptide: involvement of calcium and oxyradicals. J. Neurosci. 17, 4212–4222.

    PubMed  CAS  Google Scholar 

  • Harding H. P., Zhang Y., and Ron D. (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271–274.

    Article  PubMed  CAS  Google Scholar 

  • Herms J., Schneider I., Dewachter I., Caluwaerts N., Kretzschmar H., and Van Leuven F. (2003) Capacitive calcium entry is directly attenuated by mutant presenilin-1, independent of the expression of the amyloid precursor protein. J. Biol. Chem. 278, 2484–2489.

    Article  PubMed  CAS  Google Scholar 

  • Katayama T., Imaizumi K., Honda A., Yoneda T., Kudo T., Takeda M., et al. (2001) Disturbed activation of endoplasmic reticulum stress transducers by familial Alzheimer's disease-linked presenilin-1 mutations. J. Biol. Chem. 276, 43,446–43,454.

    CAS  Google Scholar 

  • Katayama T., Imaizumi K., Manabe T., Hitomi J., Kudo T., and Tohyama M. (2004) Induction of neuronal death by ER stress in Alzheimer's disease. J. Chem. Neuroanat. 28, 67–78.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman R. J. (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 13, 1211–1233.

    PubMed  CAS  Google Scholar 

  • Lee K., Tirasophon W., Shen X., Michalak M., Prywes R., Okada T., et al. (2002) IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev. 16, 452–466.

    Article  PubMed  CAS  Google Scholar 

  • Lee V. M., Daughenbaugh R., and Trojanowski J. Q. (1994) Microtubule stabilizing drugs for the treatment of Alzheimer's disease. Neurobiol. Aging 15(Suppl. 2), S87–89.

    Article  Google Scholar 

  • Leissring M. A., Akbari Y., Fanger C. M., Cahalan M. D., Mattson M. P., and LaFerla F. M. (2000) Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J. Cell Biol. 149, 793–798.

    Article  PubMed  CAS  Google Scholar 

  • Leissring M. A., Paul B. A., Parker I., Cotman C. W., and LaFerla F. M. (1999) Alzheimer's presenilin-1 mutation potentiates inositol 1,4,5-trisphosphate-mediated calcium signaling in Xenopusoocytes. J. Neurochem. 72, 1061–1068.

    Article  PubMed  CAS  Google Scholar 

  • Li G., Faibushevich A., Turunen B. J., Yoon S. O., Georg G., Michaelis M. L., and Dobrowsky R. T. (2003) Stabilization of the cyclin-dependent kinase 5 activator, p35, by paclitaxel decreases beta-amyloid toxicity in cortical neurons. J. Neurochem. 84, 347–362.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. (1997) Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol. Rev. 77, 1081–1132.

    PubMed  CAS  Google Scholar 

  • Mattson M. P. and Chan S. L. (2001) Dysregulation of cellular calcium homeostasis in Alzheimer's disease: bad genes and bad habits. J. Mol. Neurosci. 17, 205–224.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Chan S. L., and Camandola S. (2001) Presenilin mutations and calcium signaling defects in the nervous and immune systems. Bioessays 23, 733–744.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Mark R. J., Furukawa K., and Bruce A. J. (1997) Disruption of brain cell ion homeostasis in Alzheimer's disease by oxy radicals, and signaling pathways that protect therefrom. Chem. Res. Toxicol. 10, 507–517.

    Article  PubMed  CAS  Google Scholar 

  • Michaelis M. L., Ansar S., Chen Y., Reiff E. R., Seyb K. I., Himes R. H., et al. (2005) β-amyloid-induced neurodegeneration and protection by structurally diverse microtubule-stabilizing agents. J. Pharmacol. Exp. Ther. 312, 659–668.

    Article  PubMed  CAS  Google Scholar 

  • Michaelis M. L., Dobrowsky R. T., and Li G. (2002) Tau neurofibrillary pathology and microtubule stability. J. Mol. Neurosci. 19, 289–293.

    Article  PubMed  CAS  Google Scholar 

  • Michaelis M. L., Ranciat N., Chen Y., Bechtel M., Ragan R., Hepperle M., et al. (1998) Protection against beta-amyloid toxicity in primary neurons by paclitaxel (Taxol). J. Neurochem. 70, 1623–1627.

    Article  PubMed  CAS  Google Scholar 

  • Morishima N., Nakanishi K., Takenouchi H., Shibata T., and Yasuhiko Y. (2002) An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J. Biol. Chem. 277, 34,287–34,294.

    Article  CAS  Google Scholar 

  • Noble P. and Mayer-Proschel M. (1998) Culture of astocytes, oligodendrocytes and O-2A progenitor cells, in Culturing Nerve Cells, 2nd Edition (Banker G. and Goslin K., eds) MITT Press, Cambridge, MA, pp 499–543.

    Google Scholar 

  • Pal R., Agbas A., Bao X., Hui D., Leary C., Hunt J., et al. (2003). Selective dendrite-targeting of mRNAs of NR1 splice variants without exon 5: identification of a cisacting sequence and isolation of sequence-binding proteins. Brain Res. 994, 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Pestova T. V., Kolupaeva V. G., Lomakin I. B., Pilipenko E. V., Shatsky I. N., Agol V. I., and hellen C. U. (2001) Molecular mechanisms of translation initiation in eukaryotes. Proc. Natl. Acad. Sci. U.S.A. 98, 7029–7036.

    Article  PubMed  CAS  Google Scholar 

  • Rao R. V., Castro-Obregon S., Frankowski H., Schuler M., Stoka V., del Rio G., et al. (2002) Coupling endoplasmicreticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J. Biol. Chem. 277, 21,836–21,842.

    CAS  Google Scholar 

  • Ron D. (2002) Translational control in the endoplasmic reticulum stress response. J. Clin. Invest. 110, 1383–1388.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe D. J. (2001) Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev. 81, 741–766.

    PubMed  CAS  Google Scholar 

  • Sherman M. Y. and Goldberg A. L. (2001) Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29, 15–32.

    Article  PubMed  CAS  Google Scholar 

  • Siman R., Flood D. G., Thinakaran G., and Neumar R. W. (2001) Endoplasmic reticulum stress-induced cysteine protease activation in cortical neurons: effect of an Alzheimer's disease-linked presenilin-1 knock-in mutation. J. Biol. Chem. 276, 44,736–44,743.

    Article  CAS  Google Scholar 

  • Song L., De Sarno P., and Jope R. S. (2002) Central role of glycogen synthase kinase-3beta in endoplasmic reticulum stress-induced caspase-3 activation. J. Biol. Chem. 277, 44,701–44,708.

    CAS  Google Scholar 

  • Sood R., Porter A. C., Ma K., Quilliam L. A., and Wek R. C. (2000) Pancreatic eukaryotic initiation factor-2alpha kinase (PEK) homologues in humans, Drosophila melanogaster and Caenorhabditis elegans that mediate translational control in response to endoplasmic reticulum stress. Biochem. J. 346(Pt. 2), 281–293.

    Article  PubMed  CAS  Google Scholar 

  • Spillantini M. G. and Goedert M. (1998) Tau protein pathology in neurodegenerative diseases. Trends Neurosci. 21, 428–433.

    Article  PubMed  CAS  Google Scholar 

  • Sponne I., Fifre A., Drouet B., Klein C., Koziel V., Pincon-Raymond M., et al. (2003) Apoptotic neuronal cell death induced by the non-fibrillar amyloid-beta peptide proceeds through an early reactive oxygen species-dependent cytoskeleton perturbation. J. Biol. Chem. 278, 3437–3445.

    Article  PubMed  CAS  Google Scholar 

  • Suen K. C., Yu M. S., So K. F., Chang R. C., and Hugon J. (2003) Upstream signaling pathways leading to the activation of double-stranded RNA-dependent serine/threonine protein kinase in beta-amyloid peptide neurotoxicity. J. Biol. Chem. 278, 49,819–49,827.

    CAS  Google Scholar 

  • Terro F., Czech C., Esclaire F., Elyaman W., Yardin C., Baclet M. C., et al. (2002) Neurons overexpressing mutant presenilin-1 are more sensitive to apoptosis induced by endoplasmic reticulum-Golgi stress. J. Neurosci. Res. 69, 530–539.

    Article  PubMed  CAS  Google Scholar 

  • Tirasophon W., Lee K., Callaghan B., Welihinda A., and Kaufman R. J. (2000) The endoribonuclease activity of mammalian IRE1 autoregulates its mRNA and is required for the unfolded protein response. Genes Dev. 14, 2725–2736.

    Article  PubMed  CAS  Google Scholar 

  • Travers K. J., Patil C. K., Wodicka L., Lockhart D. J., Weissman J. S., and Walter P. (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249–258.

    Article  PubMed  CAS  Google Scholar 

  • Trushina E., Heldebrant M. P., Perez-Terzic C. M., Bortolon R., Kovtun I. V., Badger J. D. 2nd, et al. (2003) Microtubule destabilization and nuclear entry are sequential steps leading to toxicity in Huntington's disease. Proc. Natl. Acad. Sci. U.S.A. 100, 12,171–12,176.

    Article  CAS  Google Scholar 

  • Zaidi A. and Michaelis M. L. (1999) Effects of reactive oxygen species on brain synaptic plasma membrane Ca(2+)-ATPase. Free Radic. Biol. Med. 27, 810–821.

    Article  PubMed  CAS  Google Scholar 

  • Zaidi A., Barron L., Sharov V.S., Schoneich C., Michaelis E. K., and Michaelis M. L. (2003) Oxidative inactivation of purified plasma membrane Ca2+-ATPase by hydrogen peroxide and protection by calmodulin. Biochemistry 42, 12,001–12,010.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary L. Michaelis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seyb, K.I., Ansar, S., Bean, J. et al. β-amyloid and endoplasmic reticulum stress reponses in primary neurons. J Mol Neurosci 28, 111–123 (2006). https://doi.org/10.1385/JMN:28:2:111

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:28:2:111

Index Entries

Navigation