Skip to main content
Log in

GABA receptor-mediated effects in the peripheral nervous system

A cross-interaction with neuroactive steroids

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the adult mammalian central nervous system (CNS), exerts its action via an interaction with specific receptors (e.g., GABAA and GABAB). These receptors are expressed not only in neurons but also on glial cells of the CNS, which might represent a target for the allosteric action of neuroactive steroids. Herein, we have demonstrated first that in the peripheral nervous system (PNS), the sciatic nerve and myelin-producing Schwann cells express both GABAA and GABAB receptors. Specific ligands, muscimol and baclofen, respectively, control Schwann-cell proliferation and expression of some specific myelin proteins (i.e., glycoprotein P0 and peripheral myelin protein 22 [PMP22]). Moreover, the progesterone (P) metabolite allopregnanolone, acting via the GABAA receptor, can influence PMP22 synthesis. In addition, we demonstrate that P, dihydroprogesterone, and allopregnanolone influence the expression of GABAB subunits in Schwann cells. The results suggest, at least in the myelinating cells of the PNS, a cross-interaction within the GABAergic receptor system, via GABAA and GABAB receptors and neuroactive steroids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Dahan M. I. and Thalmann R. H. (1996) Progesterone regulates gamma-aminobutyric acid B (GABA-B) receptors in the neocortex of female rats. Brain Res. 727, 40–48.

    Article  PubMed  CAS  Google Scholar 

  • Barbaccia M. L., Colombo G., Affricano D., Carai M. A., Vacca G., Melis S., et al. (2002) GABA(B) receptor-mediated increase of neurosteroids by gamma-hydroxybutyric acid. Neuropharmacology 42, 782–791.

    Article  PubMed  CAS  Google Scholar 

  • Barres B. A., Koroshetz W. J., Swartz K. J., Chun L. L., and Corey D. P. (1990) Ion channel expression by white matter glia: the O-2A glial progenitor cell. Neuron 4, 507–524.

    Article  PubMed  CAS  Google Scholar 

  • Belelli D. and Lambert J. J. (2005) Neurosteroids: endogenous regulators of the GABA-A receptor. Nat. Rev. Neurosci. 6, 565–575.

    Article  PubMed  CAS  Google Scholar 

  • BenAri Y. (2002) Excitatory actions of GABA during development the nature of the nurture. Nat. Rev. Neurosci., 3, 728–739.

    Article  CAS  Google Scholar 

  • Berger T., Walz W., Schnitzer J., and Kettenmann H. (1992) GABA- and glutamate-activated currents in glial cells of the mouse corpus callosum slice. J. Neurosci. Res. 31, 21–27.

    Article  PubMed  CAS  Google Scholar 

  • Bettler B., Kaupmann K., Mosbacher J., and Gassmann M. (2004) Molecular structure and physiological functions of GABA(B) receptors. Physiol. Rev. 84, 835–867.

    Article  PubMed  CAS  Google Scholar 

  • Bhisitkul R. B., Villa J. E., and Kocsis J. D. (1987) Axonal GABA receptors are selectively present on normal and regenerated sensory fibers in rat peripheral nerve. Exp. Brain Res. 66, 659–663.

    Article  PubMed  CAS  Google Scholar 

  • Bovolin P., Santi M. R., Puia G., Costa E., and Grayson D. (1992) Expression patterns of gamma-aminobutyric acid type A receptor subunit mRNAs in primary cultures of granule neurons and astrocytes from neonatal rat cerebella. Proc. Natl. Acad. Sci. U. S. A. 89, 9344–9348.

    Article  PubMed  CAS  Google Scholar 

  • Bowery N. G. and Enna S. J. (2000) γ-Aminobutyric acidB receptors: first of the functional metabotropic heterodimers. J. Pharmacol. Exp. Ther. 292, 2–7.

    PubMed  CAS  Google Scholar 

  • Bowery N. G., Doble A., Hill D. R., Hudson A. L., Shaw J. S., Turnbull M. J., and Warrington R. (1981) Bicuculline-insensitive GABA receptors on peripheral autonomic nerve terminals. Eur. J. Pharmacol. 71, 53–70.

    Article  PubMed  CAS  Google Scholar 

  • Bowery N., Enna S. J., and Olsen R. W. (2004) Six decades of GABA. Biochem. Pharmacol. 68, 1477–1478.

    Article  PubMed  CAS  Google Scholar 

  • Bowery N. G., Hill D. R., Hudson A. L., Doble A., Middlemiss D. N., Shaw J., and Turnbull M. (1980) (−)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 283, 92–94.

    Article  PubMed  CAS  Google Scholar 

  • Bronstein J. M. (2000) Function of tetraspan proteins in the myelin sheath. Curr. Opin. Neurobiol. 10, 552–557.

    Article  PubMed  CAS  Google Scholar 

  • Brown D. A. and Marsh S. (1978) Axonal GABA-receptors in mammalian peripheral nerve trunks. Brain Res. 156, 187–191.

    Article  PubMed  CAS  Google Scholar 

  • Brown D. A., Adams P. R., Higgins A. J., and Marsh S. (1979) Distribution of GABA-receptors and GABA-carriers in the mammalian nervous system. J. Physiol. (Paris) 75, 667–671.

    CAS  Google Scholar 

  • Callachan H., Cottrell G. A., Hather N. Y., Lambert J. J., Nooney J. M., and Peters J. A. (1987) Modulation of the GABA-A receptor by progesterone metabolites. Proc. R. Soc. Lond. B. Biol. Sci. 231, 359–369.

    Article  PubMed  CAS  Google Scholar 

  • Calver A. R., Medhurst A. D., Robbins M. J., Charles K. J., Evans M. L., Harrison D. C., et al. (2000) The expression of GABAB1 and GABAB2 receptor subunits in the CNS differs from that in peripheral tissues. Neuroscience 100, 155–170.

    Article  PubMed  CAS  Google Scholar 

  • Calver A. R., Robbins M. J., Cosio G., Rice S. Q., Babbs A. J. Hirst W. D., et al. (2001). The C-terminal domains of the GABA-B receptor subunits mediate intracellular trafficking but are not required for receptor signalling. J. Neurosci. 21, 1203–1210.

    PubMed  CAS  Google Scholar 

  • Charles K. J., Deuchars J., Davies C. H., and Pangalos M. N. (2003) GABAB receptor subunit expression in glia. Mol. Cell. Neurosci. 24, 214–223.

    Article  PubMed  CAS  Google Scholar 

  • Charles K. J., Evans M. L., Robbins M. J., Calver A. R., Leslie R. A., and Pangalos M. N. (2001) Comparative immunohistochemical localisation of GABAB1a, GABAB1b, and GABAB2 subunits in rat brain, spinal cord and dorsal root ganglion. Neuroscience 106, 447–467.

    Article  PubMed  CAS  Google Scholar 

  • Clark J. A., Mezey E., Lam A. S., and Bonner T. I. (2000) Distribution of the GABAB receptor gb2 in rat CNS. Brain Res. 860, 41–52.

    Article  PubMed  CAS  Google Scholar 

  • Concas A., Mostallino M. C., Porcu P., Follesa P., Barbaccia M. L., Trabucchi M., et al. (1998) Role of brain allopregnanolone in the plasticità of γ-aminobutyric acid type A receptor in rat brain during pregnancy and after delivery. Proc. Natl. Acad. Sci. U. S. A. 95, 13284–13289.

    Article  PubMed  CAS  Google Scholar 

  • Desarmenien M., Feltz P., Occhipinti G., Santangelo F., and Schlichter R. (1984) Coexistence of GABA-A and GABA-B receptors on A delta and C primary afferents. Br. J. Pharmacol. 81, 327–333.

    PubMed  CAS  Google Scholar 

  • Deschennes M., Feltz P., and Lamour Y. (1976) A model for an estimate in vivo of the ionic basis of presynaptic inhibition: an intracellular analysis of the GABA-induced depolarization in rat dorsal root ganglia. Brain Res. 118, 486–493.

    Article  Google Scholar 

  • Do-Rego J. L., Mensah-Nyagan G. A., Beaujean D., Vaudry D., Sieghart W., Luu-The V., et al. (2000). γ-Aminobutyric acid, acting through γ-aminobutyric acid type A receptors, inhibits the biosynthesis of neurosteroids in the frog hypothalamus. Proc. Natl. Acad. Sci. U. S. A. 97, 13925–13930.

    Article  PubMed  CAS  Google Scholar 

  • Farrant M. and Nusser Z. (2005) Variation of an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat. Rev. Neurosci. 6, 215–229.

    Article  PubMed  CAS  Google Scholar 

  • Frye C. A., Duncan J. E., Basham M., and Erkine M. S. (1996a) Behavioral effects of 3alpha-androstanediol. II: hypothalamic and preoptic area actions via a GABAergic mechanism. Behav. Brain Res. 79, 119–130.

    Article  PubMed  CAS  Google Scholar 

  • Frye C. A., Van Keuren K. R., and Erkine M. S. (1996b) Behavioral effects of 3alpha-androstanediol. I: modulation of sexual receptivity and promotion of GABA-stimulated chloride flux. Behav. Brain Res. 79, 109–118.

    Article  PubMed  CAS  Google Scholar 

  • Gago N., El-Etr M., Sananès N., Cadepond F., Samule D., Avellana-Adalid V., et al. (2004) 3α, 5α-Tetrahydroprogesterone (allopregnanolone) and γ-aminobutyric acid: autocrine/paracrine interactions in the control of neonatal PSA-NCAM+ progenitor proliferation. J. Neurosci. Res. 78, 770–783.

    Article  PubMed  CAS  Google Scholar 

  • Galanopoulou A. S., Kyrozis A., Claudio O. I., Stanton P. K., and Moshe S. L. (2003) Sex-specific KCC2 expression and GABA(A) receptor function in rat substantia nigra. Exp. Neurol. 183, 628–637.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher J. P., Higashi H., and Nishi S. (1978) Characterization and ionic basis of GABA-induced depolarization recorded in vitro from cat primary afferent neurons. J. Physiol. (Lond.) 275, 263–282.

    CAS  Google Scholar 

  • Gavrilovic J., Raff M., and Cohen J. (1984) GABA uptake by purified rat Schwann cells in culture. Brain Res. 303, 183–185.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert P., Kettenmann H., and Schachner M. (1984) Gamma-aminobutyric acid directly depolarizes cultured oligodendrocytes. J. Neurosci. 4, 561–569.

    PubMed  CAS  Google Scholar 

  • Guarneri P., Guarneri R., Cascio C., Piccoli F., and Papadopoulos V. (1995) γ-Aminobutyric acid type A/benzodiazepine receptors regulate rat retina neurosteroidogenesis. Brain Res. 683, 65–72.

    Article  PubMed  CAS  Google Scholar 

  • Hosli E., Otten U., and Hosli L. (1997) Expression of GABA(A) receptors by reactive astrocytes in explant and primary cultures of rat CNS. Int. J. Dev. Neurosci. 15, 949–960.

    Article  PubMed  CAS  Google Scholar 

  • Ige A. O., Bolam J. P., Billinton A., White J. H., Marshall F. H., and Emson P. C. (2000) Cellular and sub-cellular localisation of GABAB(1) and GABAB(2) receptor proteins in the rat cerebellum. Mol. Brain Res. 83, 72–80.

    Article  PubMed  CAS  Google Scholar 

  • Inoue M. and Akaike N. (1988) Blockade of γ-aminobutyric acid-gated chloride current in frog sensory neurons by picrotoxin. Neurosci. Res. 5, 380–394.

    Article  PubMed  CAS  Google Scholar 

  • Isomoto S., Kaibara M., Sakurai-Yamashita Y., Nagayama Y., Uezono Y., Yano K., and Taniyama K. (1998) Cloning and tissue distribution of novel splice variants of the rat GABAB receptor. Biochem. Biophys. Res. Commun. 253, 10–15.

    Article  PubMed  CAS  Google Scholar 

  • Israel J. M., Schipke C. G., Ohlemeyer C., Theodosis D. T., and Kettenmann H. (2003) GABAA receptor-expressing astrocytes in the supraoptic nucleus lack glutamate uptake and receptor currents. Glia 44, 102–110.

    Article  PubMed  Google Scholar 

  • Jones K. A., Borowsky B., Tamm J. A., Craig D. A., Durkin M. M., Dai M., et al. (1998) GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2. Nature 396, 674–679.

    Article  PubMed  CAS  Google Scholar 

  • Jow F, Chiu D., Lim H. K., Novak T., and Lin S. (2004) Production of GABA by cultured hippocampal glial cells. Neurochem. Int. 45, 273–283.

    Article  PubMed  CAS  Google Scholar 

  • Kang J., Jiang L., Goldman S. A., and Nedergaard M. (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat. Neurosci. 1, 683–692.

    Article  PubMed  CAS  Google Scholar 

  • Kaupmann K., Huggel K., Heid J., Flor P. J., Bischoff S., Mickel S. J., et al. (1997) Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors. Nature 386, 239–246.

    Article  PubMed  CAS  Google Scholar 

  • Kaupmann K., Malitschek B., Schuler V., Heid J., Froestl W., Beck P., et al. (1998) GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature 396, 683–687.

    Article  PubMed  CAS  Google Scholar 

  • Keller A. F., Breton J. D., Schlichter R., and Poisbeau P. (2004) Production of 5alpha-reduced neurosteroids is developmentally regulated and shapes GABA(A) miniature IPSCs in lamina II of the spinal cord. J. Neurosci. 24, 907–915.

    Article  PubMed  CAS  Google Scholar 

  • Kelly M. J., Qiu J., Wagner E. J., and Ronnekliev O. K. (2003) Rapid effects of estrogen on G protein-coupled receptor activation of potassium channels in the central nervous system (CNS). J. Steroid Biochem. Mol. Biol. 83, 187–193.

    Article  CAS  Google Scholar 

  • Kettenmann H., Gilbert P., and Schnachner M. (1984) Depolarization of cultured oligodendrocytes by glutamate and GABA. Neuroci. Lett. 47, 271–276.

    Article  CAS  Google Scholar 

  • Kirchhoff F. and Kettenmann H. (1992) GABA triggers [Ca2+]i increase in murine precursor cells of the oligodendrocyte lineage. Eur. J. Neurosci. 4, 1049–1058.

    Article  PubMed  Google Scholar 

  • Kuner R., Kohr G., Grunewald S., Eisenhardt G., Bach A., and Kornau H.-C. (1999) Role of heteromer formation in GABAB receptor function. Science 283, 74–77.

    Article  PubMed  CAS  Google Scholar 

  • Kunkel D. D., Hendrickson A. E., Wu J.-Y., and Schwartzkroin P. A. (1986) Glutamic acid decarboxylase (GAD) immunocytochemistry of developing rabbit hippocampus. J. Neurosci. 6, 541–552.

    PubMed  CAS  Google Scholar 

  • Lambert J. J., Belelli D., Peden E., Vardy A. W., and Peters J. A. (2003) Neurosteroid modulation of GABA-A receptors. Prog. Neurobiol. 71, 67–80.

    Article  PubMed  CAS  Google Scholar 

  • LeBlanc A. C., Windebank A. J., and Poduslo J. F. (1992) Po gene expression in Schwann cells is modulated by an increase of cAMP which is dependent on the presence of axons. Mol. Brain Res. 12, 31–38.

    Article  PubMed  CAS  Google Scholar 

  • Lee M. M., Badache A., and DeVries G. H. (1999) Phosphorylation of CREB in axon-induced Schwann cell proliferation. J. Neurosci. Res. 55, 702–712.

    Article  PubMed  CAS  Google Scholar 

  • Liske S. and Morris M. E. (1994) Extrasynaptic effects of GABA (gamma-aminobutyric acid) agonists on myelinated axons of peripheral nerve. Can. J. Physiol. Pharmacol. 72, 368–374.

    PubMed  CAS  Google Scholar 

  • Liu Q. Y., Schaffner A. E., Chang Y. H., Maric D., and Barker J. L. (2000) Persistent activation of GABA(A) receptor/Cl-channels by astrocyted-derived GABA in cultured embryonic rat hippocampal neurons. J. Neurophysiol. 84, 1392–1403.

    PubMed  CAS  Google Scholar 

  • Magnaghi V., Ballabio M., Cavarretta I. T. R., Froestl W., Lambert J. J., Zucchi I., and Melcangi R. C. (2004a) GABAB receptors in Schwann cells influence proliferation and myelin protein expression. Eur. J. Neurosci. 19, 2641–2649.

    Article  PubMed  Google Scholar 

  • Magnaghi V., Ballabio M., Gonzalez L. C., Leonelli E., Motta M., and Melcangi R. C. (2004b) The synthesis of glycoprotein Po and peripheral myelin protein 22 in sciatic nerve of male rats is modulated by testosterone metabolites. Mol. Brain Res. 126, 67–73.

    Article  PubMed  CAS  Google Scholar 

  • Magnaghi V., Cavarretta I., Galbiati M., Martini L., and Melcangi R. C. (2001) Neuroactive steroids and peripheral myelin proteins. Brain Res. Rev. 37, 360–371.

    Article  PubMed  CAS  Google Scholar 

  • Maguire J. L., Stell B. M., Rafizadeh M., and Mody I. (2005) Ovarian cycle-linked changes in GABA-A receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat. Rev. Neurosci. 8, 797–804.

    Article  CAS  Google Scholar 

  • Majewska M. D., Harrison N. L., Schwartz R. D., Barker J. L., and Paul S. M. (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232, 1004–1007.

    Article  PubMed  CAS  Google Scholar 

  • Mantelas A., Stamatakis A., Kazanis I., Philippidis H., and Stylianopoulou F. (2003) Control of neuronal nitric oxide synthase and brain-derived neurotrophic factor levels by GABA-A receptors in the developing rat cortex. Dev. Brain Res. 145, 185–195.

    Article  CAS  Google Scholar 

  • Margeta-Mitrovic M., Mitrovic I., Riley R. C., Jan L. Y., and Basbaum A. I. (1999) Immunohistochemical localization of GABAB receptors in the rat central nervous system. J. Comp. Neurol. 405, 299–321.

    Article  PubMed  CAS  Google Scholar 

  • Marshall F. H., Jones K. A., Kaupmann K., and Bettler B. (1999) GABAB receptors—the first 7TM heterodimers. Trends Pharmacol. Sci. 20, 396–399.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy M. M., Amateau S. K., and Mong J. A. (2002) Steroid modulation of astrocytes in the neonatal brain: implications for adult reproductive function. Biol. Reprod. 67, 691–698.

    Article  PubMed  CAS  Google Scholar 

  • Melcangi R. C., Azcoitia I., Ballabio M., Cavarretta I., Gonzalez L. C., Leonelli E., et al. (2003) Neuroactive steroids influence peripheral myelination: a promising opportunity for preventing or treating age-dependent disfunctions of peripheral nerves. Prog. Neurobiol. 71, 57–66.

    Article  PubMed  CAS  Google Scholar 

  • Melcangi R. C., Cavarretta I. T. R., Ballabio M., Leonelli E., Schenone A., Azcoitia I. et al. (2005) Peripheral nerves: a target for the action of neuroactive steroids. Brain Res. Rev. 48, 328–338.

    Article  PubMed  CAS  Google Scholar 

  • Melcangi R. C., Magnaghi V., Cavarretta I., Zucchi I., Bovolin P., D'Urso D., and Martini L. (1999) Progesterone derivatives are able to influence peripheral myelin protein 22 and Po gene expression: possible mechanisms of action. J. Neurosi. Res. 56, 349–357.

    Article  CAS  Google Scholar 

  • Melcangi R. C., Magnaghi V., Galbiati M., Ghelarducci B., Sebastiani L., and Martini L. (2000a) The action of steroid hormones on peripheral myelin proteins: a possible new tool for the rebuilding of myelin? J. Neurocytol. 29, 327–339.

    Article  PubMed  CAS  Google Scholar 

  • Melcangi R. C., Magnaghi V., and Martini L. (2000b) Aging in peripheral nerves: regulation of myelin protein genes by steroid hormones. Prog. Neurobiol. 60, 291–308.

    Article  PubMed  CAS  Google Scholar 

  • Mensah-Nyagan A. G., Do-Rego J. L., Beaujean D., Luuthe V., Pelletier G., and Vaudry H. (2001) Regulation of neurosteroi biosyntheis in the forg diencephalons by GABA and endozepines. Horm. Behav. 40, 218–225.

    Article  PubMed  CAS  Google Scholar 

  • Mirsky R. and Jessen K. R. (1999) The neurobiology of Schwann cells. Brain Pathol. 19, 293–311.

    Google Scholar 

  • Mirsky R., Parkinson D. B., Dong Z., Meier C., Calle E., Brennan A., et al. (2001) Regulation of genes involved in Schwann cell development and differentiation. Prog. Brain Res. 132, 3–12.

    Article  PubMed  CAS  Google Scholar 

  • Morris M. E., Di Costanzo G. A., Fox S., and Werman R. (1983) Depolarizing action of GABA (γ-aminobutyric acid) on myelinated fibers of peripheral nerves. Brain Res. 278, 117–126.

    Article  PubMed  CAS  Google Scholar 

  • Naef R. and Suter U. (1998) Many facets of the peripheral myelin protein MMP22 in myelination and disease. Microsc. Res. Tech. 41, 359–371.

    Article  PubMed  CAS  Google Scholar 

  • Ng G. Y. K., Clark J., Coulombe N., Ethier N., Hebert T. E., Sullivan R., et al. (1999) Identification of a GABAB receptor subunit, gb2, required for functional GABAB receptor activity. J. Biol. Chem. 274, 7607–7610.

    Article  PubMed  CAS  Google Scholar 

  • Obrietan K., Gao X. B., and Van Den Pol A. N. (2002) Excitatory actions of GABA increase BDNF expresion via a MAPK-CREB-dependent mechanism; a positive feedback circuit in developing neurons. J. Neurophysiol. 88, 1005–1015.

    PubMed  CAS  Google Scholar 

  • Olsen R. W., Snowhill E. W., and Wamsley J. K. (1984) Autoradiographic localization of low affinity GABA receptors with [3H]bicuculline methochloride. Eur. J. Pharmacol. 99, 247–248.

    Article  PubMed  CAS  Google Scholar 

  • Owens D. F. and Kriegstein A. R. (2002) Is there more to GABA than synaptic inhibition? Nat. Rev. Neurosci. 3, 715–727.

    Article  PubMed  CAS  Google Scholar 

  • Park-Chung M., Malayev A., Purdy R. H., Gibbs T. T., and Farb D. H. (1999). Sulfated and unsulfated steroids modulate gamma-aminobutyric acid A receptor function through distinct sites. Brain Res. 830, 72–87.

    Article  PubMed  CAS  Google Scholar 

  • Pfaff T., Malitschek B., Kaupmann K., Prézeau L., Pin J.-P., Bettler B., and Karschin A. (1999) Alternative splicing generates a novel isoform of the rat metabotropic GABABR1 receptor. Eur. J. Neurosci. 11, 2874–2882.

    Article  PubMed  CAS  Google Scholar 

  • Puia G., Santi M. R., Vicini S., Pritchett D. B., Purdy R. H., Paul S. M., et al. (1990) Neurosteroids act on recombinant human GABAA receptors. Neuron 4, 759–765.

    Article  PubMed  CAS  Google Scholar 

  • Quarles R. H. (1997) Glycoproteins of myelin sheaths. J. Mol. Neurosci. 8, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Reddy D. S. (2003) Pharmacology of endogenous neuroactive steroids. Crit. Rev. Neurobiol. 15, 197–234.

    Article  PubMed  CAS  Google Scholar 

  • Rupprecht R. and Holsboer F. (1999) Neuroactivesteroids: mechanisms of action and neuropsychopharmacological perspectives. Trends Neurosci. 22, 410–416.

    Article  PubMed  CAS  Google Scholar 

  • Sanger G. J., Munonyara M. L., Dass N., Prosser H., Pangalos M. N., and Parsons M. E. (2002) GABAB receptor function in the ileum and urinary bladder of wildtype and GABAB1 subunit null mice. Auton. Autacoid. Pharmacol. 22, 147–154.

    Article  PubMed  CAS  Google Scholar 

  • Sanna E., Talani G., Busonero F., Pisu M. G., Pudy R. H., Serra M., and Biggio G. (2004) Brain steroidogenesis mediates ethanol modulation of GABA-A receptor activity in rat hippocampus. J. Neurosci. 24, 6521–6530.

    Article  PubMed  CAS  Google Scholar 

  • Semyanov A., Walker M. C., and Kullmann D. M. (2003) GABA uptake regulates cortical excitability via cell type-specific tonic inhibition. Nat. Neurosci. 6, 484–490.

    PubMed  CAS  Google Scholar 

  • Shu H.-J., Eisenman L. N., Jinadasa D., Covey D. F., Zorumski C. F., and Mennerick S. (2004) Slow actions of neuroactive steroids at GABA-A receptors. J. Neurosci. 24, 6667–6675.

    Article  PubMed  CAS  Google Scholar 

  • Sieghart W. and Sperk G. (2002) Subunit composition, distribution and function of GABA(A) receptor subtypes. Curr. Top. Med. Chem. 2, 795–816.

    Article  PubMed  CAS  Google Scholar 

  • Steiger J. L., Bandyopadhyay S., Farb D. H., and Russek S. J. (2004) cAMP response element-binding brotein, activating transcription factor-4, and upstream stimulatory factor differentially control hippocampal GABA-BR1a and GABA-BR1b subunit gene expression through alternative promoters. J. Neurosci. 24, 6115–6124.

    Article  PubMed  CAS  Google Scholar 

  • Sun B. B. and Chiu S. Y. (1999) N-type calcium channels and their regulation by GABA-B receptors in axons of neonatal rat optic nerve. J. Neurosci. 19, 5185–5194.

    PubMed  CAS  Google Scholar 

  • Thalmann R. H. and Tehrani M. H. J. (2000) Regulation of neocortical GABA-B receptor subunits by RU486 and progesterone. Soc. Neurosci. Abs. 8127.

  • Towers S., Princivalle A., Billinton A., Edmunds M., Bettler B., Urban L., et al. (2000) GABAB receptor protein and mRNA distribution in rat spinal cord and dorsal root ganglia. Eur. J. Neurosci. 12, 3201–3210.

    Article  PubMed  CAS  Google Scholar 

  • Valeyev A. Y., Hackman J. C., Holohean A. M., Wood P. M., Katz J. L., and Davidoff R. A. (1999) GABA-induced Cl- current in cultured embryonic human dorsal root ganglion neurons. J. Neurophysiol. 82, 1–9.

    PubMed  CAS  Google Scholar 

  • White J. H., Wise A., Main M. J., Green A., Fraser N. J., Disney G. H., et al. (1998) Heterodimerization is required for the formation of a functional GABAB receptor. Nature 396, 679–682.

    Article  PubMed  CAS  Google Scholar 

  • Whiting P. J., McAllister G., Vasilatis D., Bonnert T. P., Heavens R. P., Smith D. W., et al. (1997) Neuronally restricted splicing regulates the expression of a novel GABAA receptor subunit conferring atypical functional properties. J. Neurosci. 17, 5027–5037.

    PubMed  CAS  Google Scholar 

  • Whiting P. J., McKernan R. M., and Wafford K. A. (1995) Structure and pharmacology of vertebrate GABAA receptor subtypes. Int. Rev. Neurobiol. 38, 95–138.

    Article  PubMed  CAS  Google Scholar 

  • Wu F. S., Gibbs T. T., and Farb D. H. (1991) Pregnenolone sulfate: a positive allosteric modulator at the N-methyl-D-aspartate receptor. Mol. Pharmacol. 40, 333–336.

    PubMed  CAS  Google Scholar 

  • Yu R., Follesa P., and Ticku M. K. (1996) Down-regulation of the GABA receptor subunits mRNA levels in mammalian cultured cortical neurons following chronic neurosteroid treatment. Mol. Brain Res. 41, 163–168.

    Article  PubMed  CAS  Google Scholar 

  • Zagorodnyuk V. P., D'Antona G., Brookes S. J., and Costa M. (2002) Functional GABA-B receptors are present in guinea pig nodose ganglion cell bodies but not in peripheral mechanosensitive endings. Auton. Neurosci. 29, 20–29.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Magnaghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magnaghi, V., Ballabio, M., Consoli, A. et al. GABA receptor-mediated effects in the peripheral nervous system. J Mol Neurosci 28, 89–102 (2006). https://doi.org/10.1385/JMN:28:1:89

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:28:1:89

Index Entries

Navigation