Skip to main content
Log in

Second-generation antipsychotic drugs, olanzapine, quetiapine, and clozapine enhance neurite outgrowth in PC12 cells via P13K/AKT, ERK, and pertussis toxin-sensitive pathways

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Second-generation antipsychotic drugs, olanzapine, quetiapine, and clozapine, were found to enhance neurite outgrowth induced by nerve growth factor (NGF) in PC12 cells. These drugs increased the number of cells bearing neurites, the length of primary neurites, and the size of the cell body of NGF-differentiated PC12 cells. In addition, the drugs induced sprouting of neurite-like processes in PC12 cells in the absence of NGF. Olanzapine, quetiapine, and clozapine enhanced the phosphorylation of Akt and ERK in combination with NGF, and specific inhibitors of these pathways attenuated these effects. Pretreatment of cells overnight with pertussis toxin had no effect on NGF-induced differentiation but significantly decreased the effects of the antipsychotic drugs on neurite outgrowth, suggesting that Gi/Go-coupled receptors are involved in the response to drug. A better understanding of the mechanisms underlying the effects of the second-generation drugs might suggest new therapeutic targets for enhancement of neurite outgrowth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akam E. and Strange P. G. (2004) Inverse agonist properties of atypical antipsychotic drugs. Biochem. Pharmacol. 67, 2039–2045.

    Article  PubMed  CAS  Google Scholar 

  • Andersson C., Hamer R. M., Lawler C. P., Mailman R. B., and Lieberman J. A. (2002) Striatal volume changes in the rat following long-term administration of typical and atypical antipsychotic drugs. Neuropsychopharmacology 27, 143–151.

    Article  PubMed  CAS  Google Scholar 

  • Aravagiri M., Teper Y., and Marder S. R. (1999) Pharmacokinetics and tissue distribution of olanzapine in rats. Biopharm. Drug Dispos. 20, 369–377.

    Article  PubMed  CAS  Google Scholar 

  • Bai O., Wei Z., Lu W., Bowen R., Keegan D., and Li, X.-M. (2002) Protective effects of typical antipsychotic drugs on PC12 cells after serum withdrawal. J. Neurosci. Res. 69, 278–283.

    Article  PubMed  CAS  Google Scholar 

  • Bai O., Zhang H., and Li X.-M. (2004) Antipsychotic drugs clozapine and olanzapine upregulate bcl-2 mRNA and protein in rat frontal cortex and hippocampus. Brain Res. 1010, 81–86.

    Article  PubMed  CAS  Google Scholar 

  • Baldessarini R. J., Centorrino F., Flood J. G., Volpicelli S. A., Huston-Lyons D., and Cohen B. M. (1993) Tissue concentrations of clozapine and its metabolites in the rat. Neuropsychopharmacology 9, 117–124.

    PubMed  CAS  Google Scholar 

  • Bang O. S., Park E. K., Yang S. I., Lee S. R., Franke T. F., and Kang S. S. (2001) Overexpression of Akt inhibits NGF-induced growth arrest and neuronal differentiation of PC12 cells. J. Cell. Sci. 114, 81–88.

    PubMed  CAS  Google Scholar 

  • Brazil D. P. and Hemmings B. A. (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem. Sci. 26, 657–664.

    Article  PubMed  CAS  Google Scholar 

  • Cassano S., Di Lieto A., Cerillo R., and Avvedimento E. V. (1999) Membrane-bound cAMP-dependent protein kinase controls cAMP-induced differentiation in PC12 cells. J. Biol. Chem. 274, 32574–32579.

    Article  PubMed  CAS  Google Scholar 

  • Cheng A., Wang S., Yang D., Xiao R., and Mattson M. P. (2003) Calmodulin mediates brain-derived neurotrophic factor cell survival signaling upstream of Akt kinase in embryonic neocortical neurons. J. Biol. Chem. 278, 7591–7599.

    Article  PubMed  CAS  Google Scholar 

  • Ciani E., Virgili M., and Contestabile A. (2002) Akt pathway mediates a cGMP-dependent survival role of nitric oxide in cerebellar granule neurones. J. Neurochem. 81, 218–228.

    Article  PubMed  CAS  Google Scholar 

  • Cussac D., Duqueyroix D., Newman-Tancredi A., and Millan M. J. (2002) Stimulation by antipsychotic agents of mitogen-activated protein kinase (MAPK) coupled to cloned, human (h)serotonin (5-HT)(1A) receptors. Psychopharmacology (Berl.) 162, 168–177.

    Article  CAS  Google Scholar 

  • Dago L., Bonde C., Peters D., Moller A., Bomholt S. F., Hartz J. B., et al. (2002a) NS 1231, a novel compound with neurotrophic-like effects in vitro and in vivo. J. Neurochem. 81, 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Dago L., Peters D., Meyer M., Hartz B., Kruse V., Drejer J., and Gronborg M. (2002b) NS-417, a novel compound with neurotrophic-like effects. Neurochem. Res. 27, 107–111.

    Article  PubMed  CAS  Google Scholar 

  • de Rooij J., Zwartkruis F. J., Verheijen M. H., Cool R. H., Nijman S. M., Wittinghofer A., and Bos J. L. (1998) Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396, 474–477.

    Article  PubMed  CAS  Google Scholar 

  • Ditlevsen D. K., Kohler L. B., Pedersen M. V., Risell M., Kolkova K., Meyer M., et al. (2003) The role of phosphatidylinostiol 3-kinase in neural cell adhesion molecule-mediated neuronal differentiation and survival. J. Neurochem. 84, 546–556.

    Article  PubMed  CAS  Google Scholar 

  • Dudek H., Datta S. R., Franke T. F., Birnbaum M. J., Yao R., Cooper G. M., et al. (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275, 661–665.

    Article  PubMed  CAS  Google Scholar 

  • Dwyer D. S., Lu X.-H., and Bradley R. J. (2003a) Cytotoxicity of conventional and atypical antipsychotic drugs in relation to glucose metabolism. Brain Res. 971, 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Dwyer D. S., Lu X.-H., and Freeman A. M. (2003b) Neuronal glucose metabolism and schizophrenia: therapeutic prospects? Expert Rev. Neurother. 3, 29–40.

    Article  CAS  PubMed  Google Scholar 

  • Eastwood S. L., Heffernan J., and Harrison P. J. (1997) Chronic haloperidol treatment differentially affects the expression of synaptic and neuronal plasticity-associated genes. Mol. Psychiatry 2, 322–329.

    Article  PubMed  CAS  Google Scholar 

  • Egea J., Espinet C., Soler R. M., Dolcet X., Yuste V. J., Encinas M., et al. (2001) Neuronal survival induced by neurotrophins requires calmodulin. J. Cell Biol. 154, 585–597.

    Article  PubMed  CAS  Google Scholar 

  • Einat H., Manji H. K., Gould T. D., Du J., and Chen G. (2003) Possible involvement of the ERK signaling cascade in bipolar disorder: behavioral leads from the study of mutant mice. Drug News Perspect. 16, 453–463.

    Article  PubMed  CAS  Google Scholar 

  • Emamian E. S., Hall D., Birnbaum M. J., Karayiorgou M., and Gogos J. A. (2004) Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat. Genet. 36, 131–137.

    Article  PubMed  CAS  Google Scholar 

  • Greene L. A. and Tischler A. S. (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. U. S. A. 73, 2424–2428.

    Article  PubMed  CAS  Google Scholar 

  • Gutkind J. S. (2000) Regulation of mitogen-activated protein kinase signaling networks by G protein-coupled receptors. Sci. STKE, RE1.

  • Hait W. N. and Lee G. L. (1985) Characteristics of the cytotoxic effects of the phenothiazine class of calmodulin antagonists. Biochem. Pharmacol. 34, 3973–3978.

    Article  PubMed  CAS  Google Scholar 

  • Halim N. D., Weickert C. S., McClintock B. W., Weinberger D. R., and Lipska B. K. (2004) Effects of chronic haloperidol and clozapine treatment on neurogenesis in the adult rat hippocampus. Neuropsychopharmacology 29, 1063–1069.

    Article  PubMed  CAS  Google Scholar 

  • Hall D. A. and Strange P. G. (1997) Evidence that antipsychotic drugs are inverse agonists at D2 dopamine receptors. Br. J. Pharmacol. 121, 731–736.

    Article  PubMed  CAS  Google Scholar 

  • Harrison P. J. (1999) The neuropathological effects of antipsychotic drugs. Schizophr. Res. 40, 87–99.

    Article  PubMed  CAS  Google Scholar 

  • He J., Xu H., Yang Y., Zhang X., and Li X.-M. (2004) Neuroprotective effects of olanzapine on methamphetamine-induced neurotoxicity are associated with an inhibition of hyperthermia and prevention of Bcl-2 decrease in rats. Brain Res. 1018, 186–192.

    Article  PubMed  CAS  Google Scholar 

  • Herrick-Davis K., Grinde E., and Teitler M. (2000) Inverse agonist activity of atypical antipsychotic drugs at human 5-hydroxytryptamine2C receptors. J. Pharmacol. Exp. Ther. 295, 226–232.

    PubMed  CAS  Google Scholar 

  • Higuchi M., Onishi K., Masuyama N., and Gotoh Y. (2003) The phosphatidylinositol-3 kinase (PI3K)-Akt pathway suppresses neurite branch formation in NGF-treated PC12 cells. Genes Cells 8, 657–669.

    Article  PubMed  CAS  Google Scholar 

  • Jackson T. R., Blader I. J., Hammonds-Odie L. P., Burga C. R., Cooke F., Hawkins P. T., et al. (1996) Initiation and maintenance of NGF-stimulated neurite outgrowth requires activation of a phosphoinositide 3-kinase. J. Cell Sci. 109, 289–300.

    PubMed  CAS  Google Scholar 

  • Johnson G. L. and Lapadat R. (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911,1912.

    Article  PubMed  CAS  Google Scholar 

  • Kimura K., Hattori S., Kabuyama Y., Shizawa Y., Takayanagi J., Nakamura S., et al. (1994) Neurite outgrowth of PC12 cells is suppressed by wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase. J. Biol. Chem. 269, 18961–18967.

    PubMed  CAS  Google Scholar 

  • Kobayashi M., Nagata S., Kita Y., Nakatsu N., Ihara S., Kaibuchi K., et al. (1997) Expression of a constitutively active phosphatidylinositol 3-kinase induces process formation in rat PC12 cells. Use of Cre/loxP recombination system. J. Biol. Chem. 272, 16089–16092.

    Article  PubMed  CAS  Google Scholar 

  • Kodman M. and Duman R. S. (2003) Chronic olanzapine and fluoxetine administration increase cell proliferation in hippocampus and prefrontal cortex. Soc. Neurosci. Abstr. Online 849 9.

  • Konradi C. and Heckers S. (2001) Antipsychotic drugs and neuroplasticity: insights into the treatment and neurobiology of schizophrenia. Biol. Psychiatry 50, 729–742.

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber J., Schultz A., Wiltfang J., Meineke I., Gleiter C. H., Zochling R., et al. (1999) Persistence of haloperidol in human brain tissue. Am. J. Psychiatry 156, 885–890.

    PubMed  CAS  Google Scholar 

  • Kyosseva S. V. (2004) Mitogen-activated protein Kinase signaling. Int. Rev. Neurobiol. 59, 201–220.

    Article  PubMed  CAS  Google Scholar 

  • Lawlor M. A. and Alessi D. R. (2001) PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J. Cell Sci. 114, 2903–2910.

    PubMed  CAS  Google Scholar 

  • Lidow M. S. (2003) Calcium signaling dysfunction in schizophrenia: a unifying approach. Brain Res. Brain Res. Rev. 43, 70–84.

    Article  PubMed  CAS  Google Scholar 

  • Lieberman J. A., Tollefson G., Tohen M., Green A. I., Gur R. E., Kahn R., et al. (2003) Comparative efficacy and safety of atypical and conventional antipsychotic drugs in first-episode psychosis: a randomized, double-blind trial of olanzapine versus haloperidol. Am. J. Psychiatry 160, 1396–1404.

    Article  PubMed  Google Scholar 

  • Lu X.-H., Bradley R. J., and Dwyer D. S. (2003) Neurotrophic effects of olanzapine via Akt/PKB, ERK1/2 pathways. Soc. Neurosci. Abstr. Online 956.12.

  • Lu X.-H., Bradley R. J., and Dwyer D. S. (2004) Olanzapine produces trophic effects in vitro and stimulates phosphorylation of Akt/PKB, ERK1/2, and the mitogen-activated protein kinase p38. Brain Res. 1011, 58–68.

    Article  PubMed  CAS  Google Scholar 

  • McGurk S. R., Lee M. A., Jayathilake K., and Meltzer H. Y. (2004) Cognitive effects of olanzapine treatment in schizophrenia. Med. Gen. Med. 6, 27.

    Google Scholar 

  • Meltzer H. Y. (2004) What’s atypical about atypical antipsychotic drugs? Curr. Opin. Pharmacol. 4, 53–57.

    Article  PubMed  CAS  Google Scholar 

  • Olesen O. V. and Linnet K. (1999) Olanzapine serum concentrations in psychiatric patients given standard doses: the influence of comedication. Ther. Drug Monit. 21, 87–90.

    Article  PubMed  CAS  Google Scholar 

  • Pang L., Sawada T., Decker S. J., and Saltiel A. R. (1995) Inhibition of MAP kinase kinase blocks the differentiation of PC-12 cells induced by nerve growth factor. J. Biol. Chem. 270, 13585–13588.

    Article  PubMed  CAS  Google Scholar 

  • Park Y. H., Kantor L., Guptaroy B., Zhang M., Wang K. K., and Gnegy M. E. (2003) Repeated amphetamine treatment induces neurite outgrowth and enhanced amphetamine-stimulated dopamine release in rat pheochromocytoma cells (PC12 cells) via a protein kinase C- and mitogen activated protein kinase-dependent mechanism. J. Neurochem. 87, 1546–1557.

    Article  PubMed  CAS  Google Scholar 

  • Piiper A., Dikic I., Lutz M. P., Leser J., Kronenberger B., Elez R., et al. (2002) Cyclic AMP induces transactivation of the receptors for epidermal growth factor and nerve growth factor, thereby modulating activation of MAP kinase, Akt, and neurite outgrowth in PC12 cells. J. Biol. Chem. 277, 43623–43630.

    Article  PubMed  CAS  Google Scholar 

  • Pozzi L., Hakansson K., Usiello A., Borgkvist A., Lindskog M., Greengard P., and Fisone G. (2003) Opposite regulation by typical and atypical anti-psychotics of ERK1/2, CREB and Elk-1 phosphorylation in mouse dorsal striatum. J. Neurochem. 86, 451–459.

    Article  PubMed  CAS  Google Scholar 

  • Pradines A., Magazin M., Schiltz P., Le Fur G., Caput D., and Ferrara P. (1995) Evidence for nerve growth factor-potentiating activities of the nonpeptidic compound SR 57746A in PC12 cells. J. Neurochem. 64, 1954–1964.

    Article  PubMed  CAS  Google Scholar 

  • Rauser L., Savage J. E., Meltzer H. Y., and Roth B. L. (2001) Inverse agonist actions of typical and atypical antipsychotic drugs at the human 5-hydroxytryptamine(2C) receptor. J. Pharmacol. Exp. Ther. 299, 83–89.

    PubMed  CAS  Google Scholar 

  • Robertson M. D. and McMullin M. M. (2000) Olanzapine concentrations in clinical serum and postmortem blood specimens—when does therapeutic become toxic? J. Forensic Sci. 45, 418–421.

    PubMed  CAS  Google Scholar 

  • Ronn L. C., Ralets I., Hartz B. P., Bech M., Berezin A., Berezin V., et al. (2000) A simple procedure for quantification of neurite outgrowth based on stereological principles. J. Neurosci. Methods 100, 25–32.

    Article  PubMed  CAS  Google Scholar 

  • Roux P. P. and Blenis J. (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 68, 320–344.

    Article  PubMed  CAS  Google Scholar 

  • Rydel R. E. and Greene L. A. (1987) Acidic and basic fibroblast growth factors promote stable neurite outgrowth and neuronal differentiation in cultures of PC12 cells. J. Neurosci. 7, 3639–3653.

    PubMed  CAS  Google Scholar 

  • Sanchez S., Jimenez C., Carrera A. C., Diaz-Nido J., Avila J., and Wandosell F. (2004) A cAMP-activated pathway, including PKA and PI3K, regulates neuronal differentiation. Neurochem. Int. 44, 231–242.

    Article  PubMed  CAS  Google Scholar 

  • Satoh T., Furuta K., Tomokiyo K., Namura S., Nakatsuka D., Sugie Y., et al. (2001) Neurotrophic actions of novel compounds designed from cyclopentenone prostaglandins. J. Neurochem. 77, 50–62.

    Article  PubMed  CAS  Google Scholar 

  • Soderling T. R. (1999) The Ca-calmodulin-dependent protein kinase cascade. Trends Biochem. Sci. 24, 232–236.

    Article  PubMed  CAS  Google Scholar 

  • Stahnisch F. W. (2003) Making the brain plastic: early neuroanatomical staining techniques and the pursuit of structural plasticity, 1910–1970. J. Hist. Neurosci. 12, 413–435.

    Article  PubMed  Google Scholar 

  • Sweatt J. D. and Weeber E. J. (2003) Genetics of childhood disorders: LII. Learning and memory, part 5: human cognitive disorders and the ras/ERK/CREB pathway. J. Am. Acad. Child Adolesc. Psychiatry 42, 873–876.

    Article  PubMed  Google Scholar 

  • Vaudry D., Stork P. J., Lazarovici P., and Eiden L. E. (2002) Signaling pathways for PC12 cell differentiation: making the right connections. Science 296, 1648–1649.

    Article  PubMed  CAS  Google Scholar 

  • Wakade C. G., Mahadik S. P., Waller J. L., and Chiu F. C. (2002) Atypical neuroleptics stimulate neurogenesis in adult rat brain. J. Neurosci. Res. 69, 72–79.

    Article  PubMed  CAS  Google Scholar 

  • Wang H. D., Dunnavant F. D., Jarman T., and Deutch A. Y. (2004) Effects of antipsychotic drugs on neurogenesis in the forebrain of the adult rat. Neuropsychopharmacology 29, 1230–1238.

    Article  PubMed  CAS  Google Scholar 

  • Weiss B., Prozialeck W. C., and Wallace T. L. (1982) Interaction of drugs with calmodulin. Biochemical, pharmacological and clinical implications. Biochem. Pharmacol. 31, 2217–2226.

    Article  PubMed  CAS  Google Scholar 

  • Whiteman E. L., Cho H., and Birnbaum M. J. (2002) Role of Akt/protein kinase B in metabolism. Trends Endocrinol. Metab. 13, 444–451.

    Article  PubMed  CAS  Google Scholar 

  • Wilson J., Lin H., Fu D., Javitch J. A., and Strange P. G. (2001) Mechanisms of inverse agonism of antipsychotic drugs at the D(2) dopamine receptor: use of a mutant D(2) dopamine receptor that adopts the activated conformation. J. Neurochem. 77, 493–504.

    Article  PubMed  CAS  Google Scholar 

  • Yang B. H., Son H., Kim S. H., Nam J. H., Choi J. H., and Lee J. S. (2004) Phosphorylation of ERK and CREB in cultured hippocampal neurons after haloperidol and risperidone administration. Psychiatry Clin. Neurosci. 58, 262–267.

    Article  PubMed  CAS  Google Scholar 

  • Yang C., Watson R. T., Elmendorf J. S., Sacks D. B., and Pessin J. E. (2000) Calmodulin antagonists inhibit insulin-stimulated GLUT4 (glucose transporter 4) translocation by preventing the formation of phosphatidylinositol 3,4,5-trisphosphate in 3T3L1 adipocytes. Mol. Endocrinol. 14, 317–326.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donard S. Dwyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, XH., Dwyer, D.S. Second-generation antipsychotic drugs, olanzapine, quetiapine, and clozapine enhance neurite outgrowth in PC12 cells via P13K/AKT, ERK, and pertussis toxin-sensitive pathways. J Mol Neurosci 27, 43–64 (2005). https://doi.org/10.1385/JMN:27:1:043

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:27:1:043

Index Entries

Navigation