Skip to main content
Log in

A novel imaging probe for in vivo detection of neuritic and diffuse amyloid plaques in the brain

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Extensive deposition of neuritic and diffuse amyloid plaques in the brain is a critical event for the pathogenesis of Alzheimer’s disease (AD) and considered to start before the appearance of clinical symptoms. In vivo detection of these brain β-amyloid (Aβ) deposits using positron emission tomography (PET), therefore, would be a useful marker for presymptomatic detection of AD. To develop a new agent for PET probe of imaging neuritic and diffuse amyloid deposits, novel fluorescent compounds, including styryl-fluorobenzoxazole derivatives, were examined. These compounds showed a high binding affinity for both synthetic Aβ1-40 and Aβ1-42 aggregates. Some of these compounds also displayed distinct staining of neuritic and diffuse amyloid plaques in AD brain sections. A biodistribution study of styryl-fluorobenzoxazole derivatives in normal mice exhibited excellent brain uptakes (4.5–5.5% injected dose/g at 2 min postinjection). Furthermore, iv administration of BF-145, a styryl-fluorobenzoxazole derivative, demonstrated specific in vivo labeling of compact and diffuse amyloid deposits in an APP23 transgenic mouse brain, in contrast to no accumulation in a wild-type mouse brain. These findings suggest that BF-145 is a potential candidate as a probe for imaging early brain pathology in AD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agdeppa E. D., Kepe V., Liu J., Flores-Torres S., Satyamurthy N., Petric A., et al. (2001) Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for beta-amyloid plaques in Alzheimer’s disease. J. Neurosci. 21, RC189.

    Google Scholar 

  • Bacskai B. J., Kajdasz S. T., Christie R. H., Carter C., Games D., Seubert P., et al. (2001) Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nat. Med. 7, 369–372.

    Article  PubMed  CAS  Google Scholar 

  • Bacskai B. J., Klunk W. E., Mathis C. A., and Hyman B. T. (2002) Imaging amyloid-β deposits in vivo. J. Cereb. Blood Flow Metab. 22, 1035–1041.

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y. and Prusoff W. H. (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (150) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108.

    Article  PubMed  CAS  Google Scholar 

  • Crystal A. S., Giasson B. I., Crowe A., Kung M. P., Zhuang Z. P., and Trojanowski J. Q. (2003) A comparison of amyloid fibrillogenesis using the novel fluorescent compound K114. J. Neurochem. 86, 1359–1368.

    Article  PubMed  CAS  Google Scholar 

  • Du Y., Wei X., Dodel R., Sommer N., Hampel H., Gao F., et al. (2003) Human anti-β-amyloid antibodies block β-amyloid fibril formation and prevent β-amyloid-induced neurotoxicity. Brain 126, 1935–1939.

    Article  PubMed  Google Scholar 

  • Engler H., Blomqvist G., Bergstrom M., Langstrom B., Klunk W., Debnath M., et al. (2002) First human study with a benzothiazole amyloid-imaging agent in Alzheimer’s disease and control subjects. Neurobiol. Aging 23, S1568.

    Google Scholar 

  • Hardy J. and Selkoe D. J. (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353–356.

    Article  PubMed  CAS  Google Scholar 

  • Helmuth L. (2002) New Alzheimer’s treatments that may ease the mind. Science 297, 1260–1262.

    Article  PubMed  CAS  Google Scholar 

  • Kitamoto T., Ogomori K., Tateishi J., and Prusiner S. B. (1987) Formic acid pretreatment enhances immunostaining of cerebral and systemic amyloids. Lab. Invest. 57, 230–236.

    PubMed  CAS  Google Scholar 

  • Klunk W. E., Bacskai B. J., Mathis C. A., Kajdasz S. T., McLellan M. E., Frosch M. P., et al. (2002) Imaging Abeta plaques in living transgenic mice with multiphoton microscopy and methoxy-X04, a systemically administered Congo red derivative. J. Neuropathol. Exp. Neurol. 61, 797–805.

    PubMed  CAS  Google Scholar 

  • Klunk W. E., Wang Y., Huang G. F., Debnath M. L., Holt D. P., Shao L., et al. (2003) The binding of 2-(4′-methylaminophenyl)benzothiazole to postmortem brain homogenates is dominated by the amyloid component. J. Neurosci. 23, 2086–2092.

    PubMed  CAS  Google Scholar 

  • Kung H. F., Kung M. P., Zhuang Z. P., Hou C., Lee C. W. Plossl K., et al. (2003) Iodinated tracers for imaging amyloid plaques in the brain. Mol. Imaging Biol. 5, 418–426.

    Article  PubMed  Google Scholar 

  • Kung M. P., Hou C., Zhuang Z. P., Zhang B., Skovronsky D., Trojanowski J. Q., et al. (2002) IMPY: an improved thioflavin-T derivative for in vivo labeling of beta-amyloid plaques. Brain Res. 956, 202–210.

    Article  PubMed  CAS  Google Scholar 

  • Kung M. P., Skovronsky D. M., Hou C., Zhuang Z.P., Gur T. L., Zhang B., et al. (2003a) Detection of amyloid plaques by radioligands for Abeta40 and Abeta42: potential imaging agents in Alzheimer’s patients. J. Mol. Neurosci. 20, 15–24.

    Article  PubMed  CAS  Google Scholar 

  • Kung M. P., Zhuang Z. P., Hou C., Jin L. W., and Kung H. F. (2003b) Characterization of radioiodinated ligand binding to amyloid beta plaques. J. Mol. Neurosci. 20, 249–254.

    Article  PubMed  CAS  Google Scholar 

  • Lee C. W., Kung M. P., Hou C., and Kung H. F. (2003) Dimethylamino-fluorenes: ligands for detecting beta-amyloid plaques in the brain. Nucl. Med. Biol. 30, 573–580.

    Article  PubMed  CAS  Google Scholar 

  • Mathis C. A., Bacskai B. J., Kajdasz S. T., McLellan M. E., Frosch M. P., Hyman B. T., et al. (2002) A lipophilic thioflavin-T derivative for positron emission tomography (PET) imaging of amyloid in brain. Bioorg. Med. Chem. Lett. 12, 295–298.

    Article  PubMed  CAS  Google Scholar 

  • Morris J. C., Storandt M., McKeel D. W., Jr., Rubin E. H., Price J. L., Grant E. A., et al. (1996) Cerebral amyloid deposition and diffuse plaques in “normal” aging: Evidence for presymptomatic and very mild Alzheimer’s disease. Neurology 46, 707–719.

    PubMed  CAS  Google Scholar 

  • Ono M., Wilson A., Nobrega J., Westaway D., Verhoeff P., Zhuang Z. P., et al. (2003) 11C-Labeled stilbene derivatives as Aβ-aggregate-specific PET imaging agents for Alzheimer’s disease. Nucl. Med. Biol. 30, 565–571.

    Article  PubMed  CAS  Google Scholar 

  • Price J. L. and Morris J. C. (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann. Neurol. 45, 358–368.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe D. J. (2000) Imaging Alzheimer’s amyloid. Nat. Biotechnol. 18, 823, 824.

    Article  PubMed  CAS  Google Scholar 

  • Shoghi-Jadid K., Small G. W., Agdeppa E. D., Kepe V., Ercoli L. M., Siddarth P., et al. (2002) Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am. J. Geriatr. Psychiatry 10, 24–35.

    Article  PubMed  Google Scholar 

  • Skovronsky D. M., Zhang B., Kung M. P., Kung H. F., Trojanowski J. Q., and Lee V. M. (2000) In vivo detection of amyloid plaques in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. U. S. A. 97, 7609–7614.

    Article  PubMed  CAS  Google Scholar 

  • Small G. W., Agdeppa E. D., Kepe V., Satyamurthy N., Huang S.-C., and Barrio J. R. (2002) In vivo brain imaging of tangle burden in humans. J. Mol. Neurosci. 19, 323–327.

    PubMed  CAS  Google Scholar 

  • Sturchler-Pierrat C., Abramowski D., Duke M., Wiederhold K. H., Mistl C., Rothacher S., et al. (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc. Natl. Acad. Sci. U. S. A. 94, 13287–13292.

    Article  PubMed  CAS  Google Scholar 

  • Suemoto T., Okamura N., Shiomitsu T., Suzuki M., Shimadzu H., Akatsu H., et al. (2004) In vivo amyloid-β labeling in a model mouse with BF-108. Neurosci. Res. 48, 65–74.

    Article  PubMed  CAS  Google Scholar 

  • Trojanowski J. Q. (2002) Emerging Alzheimer’s disease therapies: focusing on the future. Neurobiol. Aging 23, 85–990.

    Article  Google Scholar 

  • Vickers J. C., Dickson T. C., Adlard P. A., Saunders H. L., King C. E., and McCormack G. (2000) The cause of neuronal degeneration in Alzheimer’s disease. Prog. Neurobiol. 60, 139–165.

    Article  PubMed  CAS  Google Scholar 

  • Wu C. W., Liao P. C., Lin C., Kuo C. J., Chen S. T., Chen H. I., et al. (2003) Brain region-dependent increases in beta-amyloid and apolipoprotein E levels in hypercholesterolemic rabbits. J. Neural. Transm. 110, 641–649.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Okamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okamura, N., Suemoto, T., Shiomitsu, T. et al. A novel imaging probe for in vivo detection of neuritic and diffuse amyloid plaques in the brain. J Mol Neurosci 24, 247–255 (2004). https://doi.org/10.1385/JMN:24:2:247

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:24:2:247

Index Entries

Navigation