Skip to main content
Log in

Cholesterol, copper, and accumulation of thioflavine S-reactive Alzheimer’s-like amyloid β in rabbit brain

  • Lipid-Lowering Therapies
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Accumulation of β-amyloid (Aβ) in the Alzheimer’s disease (AD) brain is considered to be causally related to the behavioral symptoms of the disorder. Transgenic mouse models of AD exhibit accumulation of Aβ in the brain and simultaneous memory deficits, and Aβ accumulation is enhanced if dietary cholesterol is administered. Likewise, dietary cholesterol induces neuronal accumulation of Aβ in New Zealand white rabbits. The cholesterol-induced accumulation of Aβ in rabbit brain is increased when distilled drinking water is supplemented with 0.12 ppm copper ion (as copper sulfate) compared to the cholesterol-induced accumulation of Aβ in rabbit brain of animals given unaltered distilled water. The numbers of affected neurons and the intensity of neuronal Aβ immunoreactivity is consistently increased among animals administered the copper ion in their drinking water. A copper-induced decrease in the clearance of overproduced Aβ from the brain is proposed as the mechanism causing Aβ accumulation and resulting in the observed memory deficits. Current studies reveal that intensely immunoreactive neurons, extracellular deposits of Aβ, and brain vessels in cholesterol-fed rabbits given copper-supplemented water were stained by thioflavine S. Thioflavine S-reactive features were not observed in cholesterol-fed rabbits given unaltered distilled drinking water. The data suggest that there is an accumulation of fibrillar Aβ induced in the brains of rabbits fed a cholesterol diet and administered trace levels of copper ion in their drinking water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atwood C. S., Scarpa R. C., Huang X., Moiré R. D., Jones W. D., Fairly D. P., et al. (2000) Characterization of copper interactions with Alzheimer amyloid beta peptides: Identification of an attomolar-affinity copper binding site on amyloid beta1-42. J. Neurochem. 75, 1219–1233.

    Article  PubMed  CAS  Google Scholar 

  • Austen B. M., Frears E. R., and Davies H. (2000) Cholesterol upregulates production of Abeta 1–40 and 1–42 in transfected cells. Neurobiol. Aging 21, S254.

    Google Scholar 

  • Austen B. M., Sidera C., Liu C., and Frears E. (2003) The role of intracellular cholesterol on the processing of the B-amyloid precursor protein. J. Nutr. Health Aging 7, 31–36.

    PubMed  CAS  Google Scholar 

  • Bales K. R., Fishman C., DeLong C., Du Y., Jordan W., and Paul S. M. (2000) Diet-induced hyperlipidemia accelerates amyloid deposition in the APPv717f transgenic mouse model of Alzheimer’s disease. Neurobiol. Aging 21, S139.

    Google Scholar 

  • Bergmann C., Runz H., Jakala P., and Hartmann T. (2000) Diversification of gamma-secretase versus beta-secretase inhibition by cholesterol depletion. Neurobiol. Aging 21, S278.

    Google Scholar 

  • Beyreuther K. (2000) Physiological function of APP processing. Neurobiol. Aging 21, S69.

  • Bush A. I., Multhaup G., Moir R. D., Williamson T. G., Small D. H., Rumble B., et al. (1993) A novel zinc (II) binding site modulates the function of the beta A4 amyloid protein precursor of Alzheimer’s disease. J. Biol. Chem. 268, 16109–16112.

    PubMed  CAS  Google Scholar 

  • Bush A. I., Pettingell W. H., Jr., Paradis M. D., and Tanzi R. E. (1994) Modulation of A beta adhesiveness and secretase site cleavage by zinc. J. Biol. Chem. 269, 12152–12158.

    PubMed  CAS  Google Scholar 

  • Chen M., Durr J., and Fernandez H. L. (2000) Possible role of calpain in normal processing of beta-amyloid precursor protein in human platelets. Biochem. Biophys. Res. Commun. 273, 170–175.

    Article  PubMed  CAS  Google Scholar 

  • Cherny R. A., Atwood C. S., Xilinas M. E., Gray D. N., Jones W. D., McLean C. A., et al. (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30, 665–676.

    Article  PubMed  CAS  Google Scholar 

  • Cornett C. R., Markesbery W. R., and Ehmann W. D. (1998) Imbalances of trace elements related to oxidative damage in Alzheimer’s disease brain. Neurotoxicology 19, 339–345.

    PubMed  CAS  Google Scholar 

  • Cuajungco M. P., Goldstein L. E., Nunomura A., Smith M. A., Lim J. T., Atwood C. S., et al. (2000) Evidence that the beta-amyloid plaques of Alzheimer’s disease represent the redox-silencing and entombment of abeta by zinc. J. Biol. Chem. 275, 19439–19442.

    Article  PubMed  CAS  Google Scholar 

  • DeMattos R. B., Bales K. R., Cummins D. J., Dodart J. C., Paul S. M., and Holtzman D. M. (2001) Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. U. S. A. 98, 8850–8855.

    Article  PubMed  CAS  Google Scholar 

  • DeMattos R. B., Bales K. R., Cummins D. J., Paul S. M., and Holtzman D. M. (2002a) Brain to plasma amyloid-beta efflux: a measure of brain amyloid burden in a mouse model of Alzheimer’s disease. Science 295, 2264–2267.

    Article  PubMed  CAS  Google Scholar 

  • DeMattos R. B., Bales K. R., Parsadanian M., O’Dell M. A., Foss E. M., Paul S. M., and Holtzman D. M. (2002b) Plaque-associated disruption of CSF and plasma amyloid-beta (Abeta) equilibrium in a mouse model of Alzheimer’s disease. J. Neurochem. 81, 229–236.

    Article  PubMed  CAS  Google Scholar 

  • Durham R. A., Parker C. A., Emmerling M. R., Bisgaier C. L., and Walker L. C. (1998) Effect of age and diet on the expression of beta-amyloid 1–40 and 1–42 in the brains of apolipoprotein-E-deficient mice. Neurobiol. Aging 19, S281.

    Google Scholar 

  • Fassbender K., Simons M., Bergmann C., Stroick M., Jutojohann D., Keller P., et al. (2001) Simvastatin strongly reduces levels of Alzheimer’s disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc. Natl. Acad. Sci. U. S. A. 98, 5371–5373.

    Article  Google Scholar 

  • Finefrock A. E., Bush A. I., and Doraiswarny P. M. (2003) Current status of metals as therapeutic targets in Alzheimer’s disease. J. Am. Geriatr. Soc. 51, 1143–1148.

    Article  PubMed  Google Scholar 

  • Frears E. R., Stephens D. J., Walters C. E., Davies H., and Austen B. M. (1999) The role of cholesterol in the biosynthesis of β-amyloid. NeuroReport 10, 1699–1705.

    Article  PubMed  CAS  Google Scholar 

  • Fung Y. K., Meade A. G., Rack E. P., Blotcky A. J., Claassen J. P., Beatty M. W., and Durham T. (1996) Mercury determination in nursing home patients with Alzheimer’s disease. Gen. Dent. 44, 74–78.

    PubMed  CAS  Google Scholar 

  • Galbete J. L., Martin T. R., Peressini E., Modena P., Bianchi R., and Forloni G. (2000) Cholesterol decreases secretion of the secreted form of amyloid precursor protein by interfering with glycosylation in the protein secretory pathway. Biochem. J. 348, 307–313.

    Article  PubMed  CAS  Google Scholar 

  • Huang X., Cuajungco M. P., Atwood C. S., Moir R. D., Tanzi R. E., and Bush A. I. (2000) Alzheimer’s disease, beta-amyloid protein and zinc. J. Nutr. 130, 1488S-1492S.

    PubMed  CAS  Google Scholar 

  • Li L., Zeigler S., Lindsey R. J., and Fukuchi K. (1999) Effects of an atherogenic diet on amyloidosis in transgenic mice overexpressing the C-terminal portion of b-amyloid precurson protein. Soc. Neurosci. 25, 1859.

    Google Scholar 

  • Moir R. D., Atwood C. S., Romano D. M., Laurans M. H., Huang X., Bush A. I., et al. (1999) Differential effects of apolipoprotein E isoforms on metal-induced aggregation of A beta using physiological concentrations. Biochemistry 38, 4595–4603.

    Article  PubMed  CAS  Google Scholar 

  • Molina J. A., Jimenez-Jimenez F. J., Aguilar M. V., Mesenguer I., Mateos-Vega C. J., Conzalez-Munoz M. J., et al. (1998) Cerebrospinal fluid levels of transition metals in patients with Alzheimer’s disease. J. Neural Transm. 105, 479–488.

    Article  PubMed  CAS  Google Scholar 

  • Racchi M., Baetta R., Salvietti N., Ianna P., Franceschini G., Paoletti R., et al. (1997) Secretory processing of amyloid precursor protein is inhibited by increase in cellular cholesterol content. Biochem J. 322, 893–898.

    PubMed  CAS  Google Scholar 

  • Refolo L. M., Pappolla M. A., LaFrancois J., Malester B., Schmidt S. D., Thomas-Bryant T., et al. (2001) A cholesterol-lowering drug reduces beta-amyloid pathology in a transgenic mouse model of Alzheimer’s disease. Neurobiol. Dis. 5, 890–899.

    Article  Google Scholar 

  • Refolo L. M., Pappolla M. A., Malester B., LaFrancois J., Bryant-Thomas Wang R., et al. (2000) Hypercholesterolemia accelerates Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol. Dis. 7, 321–331.

    Article  PubMed  CAS  Google Scholar 

  • Regland B., Lehmann W., Abedini I., Blennow K., Jonsson M., Karlsson I., et al. (2001) Treatment of Alzheimer’s disease with Clioquinol. Dement. Geriatr. Cogn. Disord. 12, 408–414.

    Article  PubMed  CAS  Google Scholar 

  • Robinson S. R. and Bishop G. M. (2002) Ab as a bioflocculant: Implications for the amyloid hypothesis of Alzheimer’s disease. Neurobiol. Aging 23, 1051–1072.

    Article  PubMed  CAS  Google Scholar 

  • Schreurs B. G., Smith-Bell C. A., Lochhead J., and Sparks D. L. (2003) Cholesterol modifies classical conditioning of the rabbit nictitating membrane response. Behav. Neurosci. 117, 1220–1232.

    Article  PubMed  CAS  Google Scholar 

  • Shie F.- G., Jin L.- W., Cook D. G., Leverenz J. B., and LeBoeul R. C. (2002) Diet-induced hypercholesterolemia enhances brain Ab accumulation in transgenic mice. NeuroReport 13, 455–459.

    Article  PubMed  CAS  Google Scholar 

  • Simons M., Keller P., De Strooper B., Beyreuther K., Dotti C. G., and Simons K. (1998) Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc. Natl. Acad. Sci. U. S. A. 95, 6460–6464.

    Article  PubMed  CAS  Google Scholar 

  • Sparks D. L. (1996) Intraneuronal β-amyloid immuno-reactivity in the CNS. Neurobiol. Aging 17, 291–299.

    Article  PubMed  CAS  Google Scholar 

  • Sparks D. L. (1997) Dietary cholesterol induces Alzheimer-like β-amyloid immunoreactivity in rabbit brain. Nutr. Metab. Cardiovasc. Dis. 7, 255–266.

    CAS  Google Scholar 

  • Sparks D. L. (1999) Neuropathologic links between Alzheimer’s disease and vascular disease, in Alzheimer’s Disease and Related Disorders, Iqbal K., Swaab D. F., Winblad B., Wisniewski H. M., eds., John Wiley, Chichester, West Sussex, England, pp. 153–163.

    Google Scholar 

  • Sparks D. L. and Schreurs B. G. (2003) Trace amounts of copper in water induce b-amyloid plaques and learning deficits in a rabbit model of Alzheimer’s disease. Proc. Natl. Acad. Sci. U. S. A. 100, 1065–1069.

    Article  Google Scholar 

  • Sparks D. L., Kou Y.-M., Roher A., Martin T. A., and Lukas R. J. (2000) Alterations of Alzheimer’s disease in the cholesterol-fed rabbit, including vascular inflammation. Preliminary observations. Ann. N. Y. Acad. Sci. 903, 335–344.

    Article  PubMed  CAS  Google Scholar 

  • Sparks D. L., Liu H., Gross D. R., and Scheff S. W. (1995) Increased density of cortical Apolipoprotein E immunoreactive neurons in rabbit brain after dietary administration of cholesterol. Neurosci. Lett. 187, 142–144.

    Article  PubMed  CAS  Google Scholar 

  • Sparks D. L., Lochhead J., Horstman D., Wagoner T., and Martin T. (2002) Water quality has a pronounced effect on cholesterol-induced accumulation of Alzheimer amyloid b (Ab) in rabbit brain. J. Alzheimer Dis. 4, 523–529.

    CAS  Google Scholar 

  • Sparks D. L., Scheff S. W., Hunsaker J. C. III, Liu H., Landers T., and Gross D. R. (1994) Induction of Alzheimer-like β-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp. Neurol. 126, 88–94.

    Article  PubMed  CAS  Google Scholar 

  • Squitti R., Rossini P. M., Cassetta E., Moffa F., Pasqualetti P., Cortesi M., et al. (2002) D-penicillamine reduces serum oxidative stress in Alzheimer’s disease patients. Eur. J. Clin. Invest. 32, 51–59.

    Article  PubMed  CAS  Google Scholar 

  • Streit W. J. and Sparks D. L. (1997) Activation of microglia in the brains of humans with heart disease and hypercholesterolemic rabbits. J. Mol. Med. 75, 130–138.

    Article  PubMed  CAS  Google Scholar 

  • White A. R., Reyes R., Mercer J. F., Camakaris J., Zheng H., Bush A. I., et al. (1999) Copper levels are increased in the cerebral cortex and liver of APP and APLP2 knockout mice. Brain Res. 842, 439–444.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Larry Sparks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sparks, D.L. Cholesterol, copper, and accumulation of thioflavine S-reactive Alzheimer’s-like amyloid β in rabbit brain. J Mol Neurosci 24, 97–104 (2004). https://doi.org/10.1385/JMN:24:1:097

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:24:1:097

Index Entries

Navigation