Skip to main content
Log in

Amyloid formation of a yeast prion determinant

  • Review Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The [PSI +] factor of the yeast Saccharomyces cerevisiae is a cytoplasmic, epigenetic regulator of translation termination and can be transmitted from mother to daughter cells in a non-Mendelian manner. The transmission is caused by self-perpetuating noncovalent changes in the physical state of the protein determinant Sup35p, rather than by changes in its encoding gene. This phenomenon is reminiscent of the protein-only mechanism proposed for the infectious agent in a group of unusual, fatal neurodegenerative diseases in mammals. These diseases, known as prion diseases, are thought to involve a self-perpetuating change in the conformation of the prion protein (PrP) from a soluble form to one reflecting amyloid structure. In contrast to mammalian PrPs, Sup35p[PSI+] is not associated with disease in yeast and is not infectious for humans. Because of the mechanistic similarities of transmission of a specific, nonsoluble protein conformation, the epigenetic inheritance of [PSI +] in yeast was called a yeast prion phenomenon, and the yeast prion hypothesis was born. The elucidation of the mechanism by which alternative protein conformations transmit their structural information is key to understanding how proteins function as elements of epigenetic inheritance and how amyloidogenic conformations can be propagated. Yeast provides an ideal system to analyze both the epigenetic traits in vivo and the phenomenon of amyloid formation in vitro. The combination of these tools will help to determine the general mechanism of prion and amyloid appearance and propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balbirnie M., Grothe R., and Eisenberg, D. S. (2001) An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid. Proc. Natl. Acad. Sci. USA 98, 2375–2380.

    Article  PubMed  CAS  Google Scholar 

  • Blake C. and Serpell L. (1996) Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous beta-sheet helix. Structure 4, 989–998.

    Article  PubMed  CAS  Google Scholar 

  • Carrell R. and Lomas D. (1997) Conformational disease. Lancet 350, 134–138.

    Article  PubMed  CAS  Google Scholar 

  • Chernoff Y. O., Derkatch I. L., and Inge-Vechtomov S. G. (1993) Multicopy SUP35 gene induces de-novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Curr. Genet. 24, 268–270.

    Article  PubMed  CAS  Google Scholar 

  • Chernoff Y. O., Galkin A. P., Lewitin E., Chernova T. A., Newnam G. P., and Belenkiy S. M. (2000) Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Mol. Microbiol. 35, 865–876.

    Article  PubMed  CAS  Google Scholar 

  • Chiesa R., Piccardo P., Ghetti B., and Harris D. A. (1998) Neurological illness in transgenic mice expressing a prion protein with an insertional mutation. Neuron 21, 1339–1351.

    Article  PubMed  CAS  Google Scholar 

  • DePace A. H. and Weissman J. S. (2002) Origins and kinetic consequences of diversity in Sup35 yeast prion fibers. Nat. Struct. Biol. 9, 389–396.

    PubMed  CAS  Google Scholar 

  • Derkatch I. L., Chernoff Y. O., Kushnirov V. V., Inge-Vechtomov S. G., and Liebman S. W. (1996) Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144, 1375–1386.

    PubMed  CAS  Google Scholar 

  • Dobson C. M. (2001) Protein folding and its links with human disease. Biochem. Soc. Symp. 68, 1–26.

    PubMed  CAS  Google Scholar 

  • Doel S. M., McCready S. J., Nierras C. R., and Cox B. S. (1994) The dominant PNM2-mutation which eliminates the PSI factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene. Genetics 137, 659–670.

    PubMed  CAS  Google Scholar 

  • Eaglestone S. S., Cox B. S., and Tuite M. F. (1999) Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J. 18, 1974–1981.

    Article  PubMed  CAS  Google Scholar 

  • Esler W. P., Felix A. M., Stimson E. R., Lachenmann M. J., Ghilardi J. R., Lu Y. A., et al. (2000) Activation barriers to structural transition determine deposition rates of Alzheimer’s disease a beta amyloid. J. Struct. Biol. 130, 174–183.

    Article  PubMed  CAS  Google Scholar 

  • Frolova L., Le Goff X., Zhouravleva G., Davydova E., Philippe M., and Kisselev L. (1996) Eukaryotic polypeptide chain release factor eRF3 is an eRF1-and ribosome-dependent guanosine triphosphatase. RNA 2, 334–341.

    PubMed  CAS  Google Scholar 

  • Geddes A. J., Parker K. D., Atkins E. D., and Beighton E. (1968) “Cross-beta” conformation in proteins. J. Mol. Biol. 32, 343–358.

    Article  PubMed  CAS  Google Scholar 

  • Glover J. R., Kowal A. S., Schirmer E. C., Patino M. M., Liu J. J., and Lindquist S. (1997) Self-seeded fibers formed by Sup35p, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 89, 811–819.

    Article  PubMed  CAS  Google Scholar 

  • Griffith J. S. (1967) Self-replication and scrapie. Nature 215, 1043–1044.

    Article  PubMed  CAS  Google Scholar 

  • Hammarstrom P., Wiseman R. L., Powers E. T., and Kelly J. W. (2003) Prevention of transthyretin amyloid disease by changing protein misfolding energetics. Science 299, 713–716.

    Article  PubMed  CAS  Google Scholar 

  • Harper J. D., Wong S. S., Lieber C. M., and Lansbury P. T. (1997) Observation of metastable Abeta amyloid protofibrils by atomic force microscopy. Chem. Biol. 4, 119–125.

    Article  PubMed  CAS  Google Scholar 

  • Inoue Y., Kishimoto A., Hirao J., Yoshida M., and Taguchi H. (2001) Strong growth polarity of yeast prion fiber revealed by single fiber imaging. J. Biol. Chem. 276, 35227–35230.

    Article  PubMed  CAS  Google Scholar 

  • Jarrett J. T., Berger E. P., and Lansbury P. T. (1993) The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32, 4693–4697.

    Article  PubMed  CAS  Google Scholar 

  • Kelly J. W. (1996) Alternative conformations of amyloidogenic proteins govern their behavior. Curr. Opin. Struct. Biol. 6, 11–17.

    Article  PubMed  CAS  Google Scholar 

  • Kelly J. W. (1998) The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr. Opin. Struct. Biol. 8, 101–106.

    Article  PubMed  CAS  Google Scholar 

  • King C. Y., Tittmann P., Gross H., Gebert R., Aebi M., and Wuthrich K. (1997) Prion-inducing domain 2-114 of yeast Sup35 protein transforms in vitro into amyloidlike filaments. Proc. Natl. Acad. Sci. USA 94, 6618–6622.

    Article  PubMed  CAS  Google Scholar 

  • Koo E. H., Lansbury P. T., and Kelly J. W. (1999) Amyloid diseases: abnormal protein aggregation in neurodegeneration. Proc. Natl. Acad. Sci. USA 96, 9989–9990.

    Article  PubMed  CAS  Google Scholar 

  • Kushnirov V. V., Kryndushkin D. S., Boguta M., Smirnov V. N., and Ter-Avanesyan M. D. (2000) Chaperones that cure yeast artificial [PSI+] and their prion-specific effects. Curr. Biol. 10, 1443–1446.

    Article  PubMed  CAS  Google Scholar 

  • Kushnirov V. V., Ter-Avanesyan M. D., Surguchov A. P., Smirnov V. N., and Inge-Vechtomov S. G. (1987) Localization of possible functional domains in sup2 gene product of the yeast Saccharomyces cerevisiae. FEBS Lett. 215, 257–260.

    Article  PubMed  CAS  Google Scholar 

  • Kushnirov V. V., Ter-Avanesyan M. D., Telckov M. V., Surguchov A. P., Smirnov V. N., and Inge-Vechtomov S. G. (1988) Nucleotide sequence of the SUP2 (SUP35) gene of Saccharomyces cerevisiae. Gene 66, 45–54.

    Article  PubMed  CAS  Google Scholar 

  • Liebman S. W. and Derkatch I. L. (1999) The yeast [PSI+] prion: making sense of nonsense. J. Biol. Chem. 274, 1181–1184.

    Article  PubMed  CAS  Google Scholar 

  • Liu J. J. and Lindquist S. (1999) Oligopeptide-repeat expansions modulate ‘protein-only’ inheritance in yeast. Nature 400, 573–576.

    Article  PubMed  CAS  Google Scholar 

  • Lomakin A., Teplow D. B., Kirschner D. A., and Benedek G. B. (1997) Kinetic theory of fibrillogenesis of amyloid beta-protein. Proc. Natl. Acad. Sci. USA 94, 7942–7947.

    Article  PubMed  CAS  Google Scholar 

  • Masel J. and Jansen V. A. (2000) Designing drugs to stop the formation of prion aggregates and other amyloids. Biophys. Chem. 88, 47–59.

    Article  PubMed  CAS  Google Scholar 

  • Massi F. and Straub J. E. (2001) Energy landscape theory for Alzheimer’s amyloid beta-peptide fibril elongation. Proteins 42, 217–229.

    Article  PubMed  CAS  Google Scholar 

  • Merlini G., Bellotti V., Andreola A., Palladini G., Obici L., Casarini S., and Perfetti V. (2001) Protein aggregation. Clin. Chem. Lab. Med. 39, 1065–1075.

    Article  PubMed  CAS  Google Scholar 

  • Partridge L. and Barton N. H. (2000) Evolving evolvability. Nature 407, 457, 458.

    Article  PubMed  CAS  Google Scholar 

  • Parham S. N., Resende C. G., and Tuite M. F. (2001) Oligopeptide repeats in the yeast protein Sup35p stabilize intermolecular prion interactions. EMBO J. 20, 2111–2119.

    Article  PubMed  CAS  Google Scholar 

  • Patino M. M., Liu J. J., Glover J. R., and Lindquist S. (1996) Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273, 622–626.

    Article  PubMed  CAS  Google Scholar 

  • Paushkin S. V., Kushnirov V. V., Smirnov V. N., and Ter-Avanesyan M. D. (1996) Propagation of the yeast prion-like [PSI+] determinant is mediated by oligomerization of the SUP35P-encoded polypeptide chain release factor. EMBO J. 15, 3127–3134.

    PubMed  CAS  Google Scholar 

  • Paushkin S. V., Kushnirov V. V., Smirnov V. N., and Ter-Avanesyan M. D. (1997) In vitro propagation of the prion-like state of yeast Sup35 protein. Science 277, 81–383.

    Article  Google Scholar 

  • Prusiner S. B. (1982) Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144.

    Article  PubMed  CAS  Google Scholar 

  • Prusiner S. B. (1997) Prion diseases and the BSE crisis. Science 278, 245–251.

    Article  PubMed  CAS  Google Scholar 

  • Prusiner S. B. (1998) Prions. Proc. Natl. Acad. Sci. USA 95, 13363–13383.

    Article  PubMed  CAS  Google Scholar 

  • Prusiner S. B. and Scott, M. R. (1997) Genetics of prions. Annu. Rev. Genet. 31, 139–175.

    Article  PubMed  CAS  Google Scholar 

  • Rochet J. C. and Lansbury P. T. (2000) Amyloid fibrillogenesis: themes and variations. Curr. Opin. Struct. Biol. 10, 60–68.

    Article  PubMed  CAS  Google Scholar 

  • Santoso A., Chien P., Osherovich L. Z. and Weissman J. S. (2000) Molecular basis of a yeast prion species barrier. Cell 100, 277–288.

    Article  PubMed  CAS  Google Scholar 

  • Scheibel T. and Lindquist S. (2001) The role of conformational flexibility in amyloid propagation by the yeast prion-protein Sup35. Nat. Struct. Biol. 8, 958–962.

    Article  PubMed  CAS  Google Scholar 

  • Scheibel T., Bloom J., and Lindquist S. (2004) The elongation of yeast prion fibers involves separable steps of association and conversion. Proc. Natl. Acad. Sci. USA 101, 2287–2292.

    Article  PubMed  CAS  Google Scholar 

  • Scheibel T., Kowal A., Bloom J., and Lindquist S. (2001) Bi-directional amyloid fiber growth for a yeast prion determinant. Curr. Biol. 11, 366–369.

    Article  PubMed  CAS  Google Scholar 

  • Serio T. R. and Lindquist S. L. (1999) [PSI+]: an epigenetic modulator of translation termination efficiency. Annu. Rev. Cell Dev. Biol. 15, 661–703.

    Article  PubMed  CAS  Google Scholar 

  • Serio T. R. and Lindquist S. L. (2000) Protein-only inheritance in yeast: something to get [PSI+]-ched about. Trends Cell Biol. 10, 98–105.

    Article  PubMed  CAS  Google Scholar 

  • Serio T. R., Cashikar A. G., Kowal A. S., Sawicki G. J., Moslehi J. J., Serpell L., et al. (2000) Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289, 1317–1321.

    Article  PubMed  CAS  Google Scholar 

  • Sparrer H. E., Santoso A., Szoka F. C., and Weissman J. S. (2000) Evidence for the prion hypothesis: induction of the yeast [PSI+] factor by in vitro-converted Sup35 protein. Science 289, 595–599.

    Article  PubMed  CAS  Google Scholar 

  • Stansfield I., Jones K. M., Kushnirov V. V., Dagkesamanskaya A. R., Poznyakovski A. I., Paushkin S. V., et al. (1995) The products of the SUP45 (eRF1) and SUP35P genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J. 14, 4365–4373.

    PubMed  CAS  Google Scholar 

  • Sunde M. and Blake C. (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. Adv. Protein Chem. 50, 123–159.

    Article  PubMed  CAS  Google Scholar 

  • Ter-Avanesyan M. D., Dagkesamanskaya A. R., Kushnirov V. V., and Smirnov V. N. (1994) The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. Genetics 137, 671–676.

    PubMed  CAS  Google Scholar 

  • Ter-Avanesyan M. D., Kushnirov V. V., Dagkesamanskaya A. R., Didichenko S. A., Chernoff Y. O., Inge-Vechtomov S. G., and Smirnov V. N. (1993) Deletion analysis of the SUP35P gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol. Microbiol. 7, 683–692.

    Article  PubMed  CAS  Google Scholar 

  • True H. and Lindquist S. (2000) A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407, 477–485.

    Article  PubMed  CAS  Google Scholar 

  • Weissmann C. (1999) Molecular genetics of transmissible spongiform encephalopathies. J. Biol. Chem. 274, 3–6.

    Article  PubMed  CAS  Google Scholar 

  • Wickner R. B. (1994) [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264, 566–569.

    Article  PubMed  CAS  Google Scholar 

  • Wickner R. B., Taylor K. L., Edskes H. K., Maddelein M. L., Moriyama H., and Roberts B. T (2000) Prions of yeast as heritable amyloidoses. J. Struct. Biol. 130, 310–322.

    Article  PubMed  CAS  Google Scholar 

  • Zhouravleva G., Frolova L., Le Goff X., Le Guellec R., Inge-Vechtomov S., Kisselev L., and Philippe M. (1995) Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J. 14, 4065–4072.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Scheibel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheibel, T. Amyloid formation of a yeast prion determinant. J Mol Neurosci 23, 13–22 (2004). https://doi.org/10.1385/JMN:23:1-2:013

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:23:1-2:013

Index Entries

Navigation