Skip to main content
Log in

An immortalized, type-1 astrocyte of mescencephalic origin source of a dopaminergic neurotrophic factor

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Rat embryonic d 14 (E14) mesencephalic cells, 2.5% of which are glioblasts, were incubated in medium containing 10% of fetal bovine serum for 12 h and subsequently expanded in a serum-free medium using basic fibroblast growth factor (bFGF) as the mitogen. On a single occasion, after more than 15 d in culture, several islets of proliferating, glial-like cells were observed in one dish. The cells, when isolated and passaged, proliferated rapidly in either a serum-free or serum-containing growth medium. Subsequent immunocytochemical analysis showed that they stained positive for GFAP and vimentin, and negative for A2B5, O4, GalC, and MAP2. Serum-free conditioned medium (CM) prepared from these cells caused a fivefold increase in survival and promoted neuritic expansion of E14 mesencephalic dopaminergic neurons in culture. These actions are similar to those exerted by CM derived from primary, mesencephalic type-1 astrocytes. The pattern of expression of the region-selective genes; wnt-1, en-1, showed that 70% of the cells were heteroploid, and of these, 50% were tetraploid. No apparent decline in proliferative capacity has been observed after 25 passages. The properties of this cell line, named ventral mesencephalic cell line one (VMCL1), are consistent with those of an immortalized, type-1 astrocyte. The mesencephalic origin of the cell line, and the pattern and potency of the neurotrophic activity exerted by the CM, strongly suggest that the neurotrophic factor(s) identified are novel, and will likely be strong candidates with clinical utility for the treatment of Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barde Y.-A. (1989) Trophic factors and neuronal survival. Neuron 2, 1525–1534.

    Article  PubMed  CAS  Google Scholar 

  • Barde Y.-A. (1994) Neurotrophic factors: an evolutionary perspective. J. Neurobiol. 25, 1329–1333.

    Article  PubMed  CAS  Google Scholar 

  • Bello M. J. and Rey J. A. (1990) Chromosome aberrations in metastatic ovarian cancer: relationship with abnormalities in primary tumors. Int. J. Cancer 45, 50–54.

    Article  PubMed  CAS  Google Scholar 

  • Bunney B. S., Chiodo L. A., and Grace A. A. (1991) Midbrain dopamine system electrophysiological functioning: A review and new hypothesis. Synapse 9, 79–94.

    Article  PubMed  CAS  Google Scholar 

  • Davies A. M. (1994) The role of neurotrophins in the developing nervous system. J. Neurobiol. 25, 1334–1348.

    Article  PubMed  CAS  Google Scholar 

  • Easton R. M., Deckwerth T. L., Parsadanian A. S., and Johnson E. M. Jr. (1997) Analysis of the mechanism of loss of trophic factor dependence associated with neuronal maturation: A phenotype indistinguishable from Bax deletion. J. Neurosci. 17, 9656–9666.

    PubMed  CAS  Google Scholar 

  • Ebens A., Brose K., Leonardo E. D., Hanson M. G., Jr., Bladt F., Birchmeier C., Barres B. A., and Tessier-Lavigne M. (1996) Hepatocyte growth factor scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons. Neuron 17, 1157–1172.

    Article  PubMed  CAS  Google Scholar 

  • Engele J. and Bohn M. C. (1991) The neurotrophic effects of fibroblast growth factors on dopaminergic neurons in vitro are mediated by mesencephalic glia. J. Neurosci. 11, 3070–3078.

    PubMed  CAS  Google Scholar 

  • Engele J., Rieck H., Choi-Lundberg D., and Bohn M. C. (1996) Evidence for a novel neurotrophic factor for dopaminergic neurons secreted from mesencephalic glial cell lines. J. Neurosci. Res. 43, 576–586.

    Article  PubMed  CAS  Google Scholar 

  • Farkas L. M., Suter-Crazzolara C., and Unsicker K. (1997) GDNF induces the calretinin phenotype in cultures of embryonic striatal neurons. J. Neurosci. Res. 50, 361–372.

    Article  PubMed  CAS  Google Scholar 

  • Ferrer I., López E., Pozas E., Ballabriga J., and Martí, E. (1988) Multiple neurotrophic signals converge in surviving CA1 neurons of the gerbil hippocampus following transient forebrain ischemia. J. Comp. Neurol. 394, 416–430.

    Article  Google Scholar 

  • Garcia-Abreu J., Cavalcante L. A., and Neto V. M. (1995) Differential patterns of laminin expression in lateral and medial midbrain glia. Neuroreport 6, 761–764.

    Article  PubMed  CAS  Google Scholar 

  • Gaul G. and Lübbert H. (1992) Cortical astrocytes activated by basic fibroblast growth factor secrete molecules that stimulate differentiation of mesencephalic dopaminergic neurons. Proc. R. Soc. Lond. B. 249, 57–63.

    Article  CAS  Google Scholar 

  • Giess M. C. and Weber M. J. (1984) Acetylcholine metabolism in rat spinal cord cultures: regulation by a factor involved in the determination of the neurotransmitter phenotype of sympathetic neurons. J. Neurosci. 4, 1442–1452.

    PubMed  CAS  Google Scholar 

  • Gorter A., van de Griend R. J., van Eendenburg J. D., Haasnoot W. H., and Fleuren G. J. (1993) Production of bi-specific monoclonal antibodies in a hollow-fiber bioreactor. J. Immunol. Meth. 161, 145–150.

    Article  CAS  Google Scholar 

  • Grace A. A. (1991) Regulation of spontaneous activity and oscillatory spike firing in rat midbrain dopamine neurons recorded in vitro. Synapse 7, 221–234.

    Article  PubMed  CAS  Google Scholar 

  • Gray C. W. and Patel A. J. (1992) Characterization of a neurotrophic factor produced by cultured astrocytes involved in the regulation of subcortical cholinergic neurons. Brain Res. 574, 257–265.

    Article  PubMed  CAS  Google Scholar 

  • Hamburger V., Brunso-Bechtold J., and Yip J. (1981) Neuronal death in the spinal ganglia of the chick embryo and its reduction by nerve growth factor. J. Neurosci. 1, 60–71.

    PubMed  CAS  Google Scholar 

  • Hefti F. (1994) Neurotrophic factor therapy for nervous system degenerative diseases. J. Neurobiol. 25, 1418–1435.

    Article  PubMed  CAS  Google Scholar 

  • Henderson C. E., Camu W., Mettling C., Gouin A., Poulsen K., Karihaloo M., Rullamas J., Evans, T., McMahon S. B., Armanini M. P., Berkemeier L., Phillips H. S., and Rosenthal A. (1993) Neurotrophins promote motor neuron survival and are present in embryonic limb bud. Nature 363, 266–270.

    Article  PubMed  CAS  Google Scholar 

  • Johnson J. E., Qin-Wei Y., Prevette D., and Oppenheim R. W. (1995) Brain-derived proteins that rescue spinal motoneurons from cell death in the chick embryo: comparisons with target-derived and recombinant factors. J. Neurobiol. 27, 573–589.

    Article  PubMed  CAS  Google Scholar 

  • Joyner A. L. (1996) Engrailed, Wnt and Pax genes regulate midbrain-hindbrain development. Trends Genet. 12, 15–20.

    Article  PubMed  CAS  Google Scholar 

  • Junier M. P., Suzuki F., Onteniente B., and Peschanski M. (1994) Target-deprived CNS neurons express the NGF gene while reactive glia around their axonal terminals contain low and high affinity NGF receptors. Mol. Brain Res. 24, 247–260.

    Article  PubMed  CAS  Google Scholar 

  • Korsching S. (1993) The neurotrophic factor concept: a re-examination. J. Neurosci. 13, 2739–2748.

    PubMed  CAS  Google Scholar 

  • Lamb A. H. (1979) Evidence that some developing limb motoneurons die for reasons other than peripheral competition. Dev. Biol. 71, 8–21.

    Article  PubMed  CAS  Google Scholar 

  • Lamb A. H. (1981a) Selective bilateral motor innervation in Xenopus tadpoles with one hind limb. J. Embryol. Exp. Morphol. 65, 149–163.

    PubMed  CAS  Google Scholar 

  • Lamb A. H. (1981b) Target dependency of developing motoneurons in Xenopus laevis. J. Comp. Neurol. 203, 157–171.

    Article  PubMed  CAS  Google Scholar 

  • Lau Y. S., Hao R. Y., Fung Y. K., Fu L. S., Bishop J. F., Pfeiffer R. F., and Mouradian M. M. (1998) Modulation of nigrostriatal dopaminergic transmission by antisense oligodeoxynucleotide against brain-derived neurotrophic factor. Neurochem. Res. 23, 525–532.

    Article  PubMed  CAS  Google Scholar 

  • LaVail M. M., Unoki K., Yasumura D., Matthes M. T., Yancopoulos G. D., and Steinberg R. H. (1992) Multiple growth factors, cytokines, and neurotrophins rescue photoreceptors from the damaging effects of constant light. Proc. Natl. Acad. Sci. USA 89, 11,249–11,253.

    Article  CAS  Google Scholar 

  • Levi-Montalcini R. (1972) The morphological effects of immunosympathectomy, Immunosympathectomy (Steiner G. and Schonbaum E., eds.), Elsevier, Amsterdam, pp. 55–78.

    Google Scholar 

  • Li L., Oppenheim R. W., Lei M., and Houenou L. J. (1994) Neurotrophic agents prevent motoneuron death following sciatic nerve section in the neonatal mouse. J. Neurobiol. 25, 759–766.

    Article  PubMed  CAS  Google Scholar 

  • Lin L.-F. H., Doherty D. H., Lile J. D., Bektesh S., and Collins F. (1993) GDNF: A glial cell-line derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130–1132.

    Article  PubMed  CAS  Google Scholar 

  • Lindsay R. M., Altar C. A., Cedarbaum J. M., Hyman C., and Wiegand S. J. (1993) The therapeutic potential of neurotrophic factors in the treatment of Parkinson’s disease. Exp. Neurol. 124, 103–118.

    Article  PubMed  CAS  Google Scholar 

  • Lubischer J. L. and Arnold A. P. (1995) Evidence for target regulation of the development of androgen sensitivity in rat spinal motoneurons. Dev. Neurosci. 17, 106–117.

    PubMed  CAS  Google Scholar 

  • McMahon A. P. and Bradley A. (1990) The Wnt-1 (int-1) proto-oncogene is required for development of a large portion of the mouse brain. Cell 62, 1073–1085.

    Article  PubMed  CAS  Google Scholar 

  • McMahon A. P., Joyner A. L., Bradley A., and McMahon J. A. (1992) The midbrain hindbrain phenotype of wnt-1-/wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell 69, 581–595.

    Article  PubMed  CAS  Google Scholar 

  • Mena M. A., Casarejos M. J., Carazo A., DePaino C. L., and Yébenes J. G. (1996) Glia conditioned medium protects fetal rat midbrain neurones in culture from L-DOPA toxicity. Neuroreport 7, 441–445.

    Article  PubMed  CAS  Google Scholar 

  • Millen K. J., Wurst W., Herrup K., and Joyner A. L. (1994) Abnormal embryonic cerebellar development and patterning of postnatal foliation in two mouse engrailed-2 mutants. Development 120, 695–706.

    PubMed  CAS  Google Scholar 

  • Milligan C. E., Oppenheim R. W., and Schwartz L. M. (1994) Motoneurons deprived of trophic support in vitro require new gene expression to undergo programmed cell death. J. Neurobiol. 25, 1005–1016.

    Article  PubMed  CAS  Google Scholar 

  • Mitsumoto H., Ikeda K., Klinkosz B., Cedarbaum J. M., Wong V., and Lindsay R. M. (1994) Arrest of motor neuron disease in wobbler mice cotreated with CNTF and BDNF. Science 265, 1107–1110.

    Article  PubMed  CAS  Google Scholar 

  • Mou K., Hunsberger C. L., Cleary J. M., and Davis R. L. (1997) Synergistic effects of BDNF and NT-3 on postnatal spiral ganglion neurons. J. Comp. Neurol. 386, 529–539.

    Article  PubMed  CAS  Google Scholar 

  • Nishi R. (1994) Target-derived molecules that influence the development of neurons in the avian ciliary ganglion. J. Neurobiol. 25, 612–619.

    Article  PubMed  CAS  Google Scholar 

  • O’Malley E. K., Sieber B.-A., Black I. B., Dreyfus C. F. (1992) Mesencephalic type I astrocytes mediate the survival of substantia nigra dopaminergic neurons in culture. Brain Res. 582, 65–70.

    Article  PubMed  CAS  Google Scholar 

  • O’Malley E. K., Sieber B.-A., Morrison R. S., Black I. B., and Dreyfus C. F. (1994) Nigral type I astrocytes release a soluble factor that increases dopaminergic neuron survival through mechanisms distinct from basic fibroblast growth factor. Brain Res. 647, 83–90.

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim R. W. (1996) The concept of uptake and retrograde transport of neurotrophic molecules during development: History and present status. Neurochem. Res. 21, 769–777.

    Article  PubMed  CAS  Google Scholar 

  • Perrimon N. (1994) The genetic basis of patterned baldness in Drosophila. Cell 76, 781–784.

    Article  PubMed  CAS  Google Scholar 

  • Robinson C. J. (1996) Neurotrophic factors—Novel therapeutics. Trends Biotechnol. 14, 451,452.

    Article  CAS  Google Scholar 

  • Schotzinger R., Yin X., Landis S. (1994) Target determination of neurotransmitter phenotype in sympathetic neurons. J. Neurobiol. 25, 620–639.

    Article  PubMed  CAS  Google Scholar 

  • Sendtner M., Götz R., Holtmann B., Escary J. L., Masu Y., Carroll P., Wolf E., Brem G., Brulet P., and Thoenen H. (1996) Cryptic physiological trophic support of motoneurons by LIF revealed by double gene targeting of CNTF and LIF. Curr. Biol. 6, 686–694.

    Article  PubMed  CAS  Google Scholar 

  • Shimoda K., Sauve Y., Marini A., Schwartz J. P., and Commissiong J. W. (1992) A high percentage yield of tyrosine hydroxylase-positive cells from rat E14 mesencephalic cell culture. Brain Res. 586, 319–331.

    Article  PubMed  CAS  Google Scholar 

  • Sofroniew M. V. (1996) Nerve growth factor, aging and Alzheimer’s disease. Alzheimer’s Res. 2, 7–14.

    CAS  Google Scholar 

  • Song D.-K., Chalepakis G., Gruss P., and Joyner A. L. (1996) Two pax-binding sites are required for early embryonic brain expression of an engrailed-2 transgene. Development 122, 627–635.

    PubMed  CAS  Google Scholar 

  • Tafreshi A. P., Zhou X. F., and Rush R. A. (1998) Endogenous nerve growth factor and neurotrophin-3 act simultaneously to ensure the survival of postnatal sympathetic neurons in vivo. Neuroscience 83, 373–380.

    Article  PubMed  CAS  Google Scholar 

  • Takeshima T., Johnston J. M., and Commissiong J. W. (1994a) Mesencephalic type 1 astrocytes rescue dopaminergic neurons from death induced by serum deprivation. J. Neurosci. 14, 4769–4779.

    PubMed  CAS  Google Scholar 

  • Takeshima T., Johnston J. M., and Commissiong J. W. (1994b) Oligodendrocyte-type-2 astrocyte (O-2A) progenitors increase the survival of rat mesencephalic, dopaminergic neurons from death induced by serum deprivation. Neurosci. Lett. 166, 178–182.

    Article  PubMed  CAS  Google Scholar 

  • Takeshima T., Shimoda K., Sauve Y., and Commission J. W. (1994c) Astrocyte-dependent and independent phases of the development and survival of rat embryonic day 14 mesencephalic, dopaminergic neurons in culture. Neuroscience 60, 809–823.

    Article  PubMed  CAS  Google Scholar 

  • Takeshima T., Shimoda K., Johnston J. M., and Commissiong J. W. (1996) Standardized methods to bioassay neurotrophic factors for dopaminergic neurons. J. Neurosci. Meth. 67, 27–41.

    Article  CAS  Google Scholar 

  • Thomas K. R. and Capecchi M. R. (1990) Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellum development. Nature 346, 847–850.

    Article  PubMed  CAS  Google Scholar 

  • Unoki K. and LaVail M. M. (1994) Protection of the rat retina from ischemic injury by brain-derived neurotrophic factor, cilinary neurotrophic factor, and basic fibroblast growth factor. Invest. Ophthalmol. Vis. Sci. 35, 907–915.

    PubMed  CAS  Google Scholar 

  • Urbanek P., Wang Z.-Q., Fetka I., Wagner E. F., and Busslinger M. (1994) Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BASP. Cell 79, 901–912.

    Article  PubMed  CAS  Google Scholar 

  • Vogel K. S. and Davies A. M. (1991) The duration of neurotrophic factor independence in early sensory neurons is matched to the time course of target field innervation. Neuron 7, 819–830.

    Article  PubMed  CAS  Google Scholar 

  • Weiss-Wunder L. T. and Chesselet M.-F. (1991) Subpopulations of mesencephalic dopaminergic neurons express different levels of tyrosine hydroxylase messenger RNA. J. Comp. Neurol. 303, 478–488.

    Article  PubMed  CAS  Google Scholar 

  • Wurst W., Auerbach A. B., and Joyner A. L. (1994) Multiple developmental defects of Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development 120, 2065–2075.

    PubMed  CAS  Google Scholar 

  • Yamada T., McGeer P. L., Baimbridge K. G., and McGeer E. G. (1990) Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res. 526, 303–307.

    Article  PubMed  CAS  Google Scholar 

  • Zhou J., Bradford H. F., and Stern G. M. (1994) The stimulatory effect of brain-derived neurotrophic factor on dopaminergic phenotype expression of embryonic rat cortical neurons in vitro. Dev. Brain Res. 81, 318–324.

    Article  CAS  Google Scholar 

  • Zinman L. H., Lawrance G., Wang W., Verge V. M. K., Dow K. E., Maurice D. H., Richardson P. M., and Riopelle R. J. (1998) Collaborative and reciprocal effects of ciliary neurotrophic factor and nerve growth factor on the neuronal phenotype of human neuroblastoma cells. J. Neurochem. 70, 1411–1420.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panchision, D.M., Martin-DeLeon, P.A., Takeshima, T. et al. An immortalized, type-1 astrocyte of mescencephalic origin source of a dopaminergic neurotrophic factor. J Mol Neurosci 11, 209–221 (1998). https://doi.org/10.1385/JMN:11:3:209

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:11:3:209

Index Entries

Navigation