Skip to main content
Log in

Run-on gene transcription in human neocortical nuclei

Inhibition by nanomolar aluminum and implications for neurodegenerative disease

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The incorporation of [α-32P]-uridine triphosphate into DNA transcription products was examined in short post-mortem interval (PMI) human brain neocortical nuclei (n, 22; PMI, 0.5–24 h) using run-on gene transcription. Reverse Northern dot-blot hybridization of newly synthesized RNA against either total cDNA or Alu repetitive DNA indicated that human brain neocortical nuclei of up to 4-h PMI were efficient in incorporating radiolabel into new transcription products, after which there was a graded decline in de novo RNA biosynthetic capacity. To test the effects of 0–3000 nM concentrations of ambient aluminum on RNA polymerase I (RNAP I) and RNA polymerase II (RNAP II) transcription, dot blots containing 0.5, 1.0, 2.0, and 5.0 µg of DNA for (1) the human-specific Alu repetitive element (2) the neurofilament light (NFL) chain, and (3) glial fibrillary acidic protein (GFAP) were Northern hybridized against newly synthesized radiolabeled total RNA. These DNAs represent heterogeneous nuclear RNA (hnRNA), neuronal-, and glial-specific markers, respectively. We report here a dose-dependent repression in the biosynthetic capabilities of brain RNAP II in the range of 50–100 nM aluminum, deficits similar to those previously described using a rabbit neocortical nuclei transcription system and at concentrations that have been reported in Alzheimer’s disease (AD) euchromatin. Transcription from RNAP II and the neuron-specific NFL gene in the presence of aluminum was found to be particularly affected. These findings support the hypothesis that brain gene transcription in the presence of trace amounts of ambient aluminum impairs mammalian brain DNA to adequately read out genetic information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad R., Naoui M., Neault J. F., Diamantoglou S., and Tajmir-Riahi H. A. (1996) An FTIR spectroscopic study of calf-thymus DNA complexation with Al(III) and Ga(III) cations. J. Biomol. Struct. Dyn. 13, 795–802.

    PubMed  CAS  Google Scholar 

  • Alzheimer A., Stelzmann R. A., Schnitzlein H. N., and Murtagh F. R. (1995) An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde.” Clin. Anat. 8, 429–431.

    Article  PubMed  CAS  Google Scholar 

  • Amano R., Oishi S., Enomoto S., and Ambe F. (1996) Biodistribution of trace elements in normal, aluminum overloaded and cadmium overloaded mice. Ann. Clin. Lab. Sci. 26, 531–541.

    PubMed  CAS  Google Scholar 

  • Bertholf R. L., Herman M. M., Savory J., Carpenter R. M., Sturgill B. C., Katsetos C. D., Vandenberg S. R., and Wills M. R. (1989) A long-term intravenous model of aluminum maltol toxicity in rabbits: tissue distribution, hepatic, renal and neuronal cytoskeletal changes associated with systemic exposure. Toxicol. Appl. Pharmacol. 98, 58–74.

    Article  PubMed  CAS  Google Scholar 

  • Bolla K., Briefel G., Spector D., Schwartz B. S., Wieler L., Herron J., and Gimenez L. (1992) Neurocognitive effects of aluminum. Arch. Neurol. 49, 1021–1026.

    PubMed  CAS  Google Scholar 

  • Bouras C., Giannakopoulos P., Good P. F., Hsu A., Hof P. R., and Perl D. P. (1997) A laser microprobe mass analysis of brain aluminum and iron in dementia pugilistica: comparison with Alzheimer’s disease. Eur. Neurol. 38, 53–58.

    PubMed  CAS  Google Scholar 

  • Chen J. T., Lane M. A., and Clark D. P. (1996) Inhibitors of the polymerase chain reaction in Papanicolaou stain. Removal with a simple destaining procedure. Acta Cytol. 40, 873–877.

    PubMed  CAS  Google Scholar 

  • Chomczynski P. (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15, 532–536.

    PubMed  CAS  Google Scholar 

  • Crapper D. R., Quittkat S., Krishnan S. S., Dalton A. J., and De Boni, U. (1980) Intranuclear aluminum content in Alzheimer’s disease, dialysis encephalopathy and experimental aluminum encephalopathy. Acta Neuropath. 50, 19–24.

    Article  PubMed  CAS  Google Scholar 

  • Crapper McLachlan D. R., Lukiw W. J., Mizzen C. A., and Kruck T. P. A. (1988) Chromatin structure in Alzheimer’s disease: Effect on 5′ leader sequence for NF-L gene and the role of aluminum. Alzheimer’s Dis. Related Disord. 2, 3–10.

    Google Scholar 

  • De Boni U. and McLachlan D. R. (1980) Senile dementia and Alzheimer’s disease: a current view. Life Sci. 27, 1–14.

    Article  PubMed  Google Scholar 

  • Del Castillo P., Llorente A. R., Gomez A., Gosalvez J., Goyanes V. J., and Stockert J. C. (1990) New fluorescence reactions in DNA cytochemistry. 2. Microscopic and spectroscopic studies on fluorescent aluminum complexes. Anal. Quant. Cytol. Histol. 12, 11–20.

    PubMed  Google Scholar 

  • Ehmann W. D. and Markesbery W. R. (1994) A multi-technique approach to the study of aluminum in Alzheimer’s disease brain. Life Chem. Rep. 11, 11–28.

    CAS  Google Scholar 

  • Estable-Puig R. F. de, Estable-Puig J. F. de, and Romero C. (1971). Nuclear changes in glial cells after aluminum hydroxide. Virchows Arch. B. Cell Pathol. 8, 267–273.

    PubMed  Google Scholar 

  • Fei H., and Drake T. A. (1993). A rapid nuclear run-off transcription assay. Biotechniques 15, 838.

    PubMed  CAS  Google Scholar 

  • Forbes W. F. and Gentleman J. F. (1998) Risk factors, causality, and policy initiatives: the case of aluminum and mental impairment. Exptl. Gerontol. 33, 141–154.

    Article  CAS  Google Scholar 

  • Ganrot P. O. (1986) Metabolism and possible health effects of aluminum. Environ. Health Perspect. 65, 363–441.

    Article  PubMed  CAS  Google Scholar 

  • Gelles J. and Landick R. (1998) RNA polymerase as a molecular motor. Cell 93, 13–16.

    Article  PubMed  CAS  Google Scholar 

  • Guy S. P., Jones D., Mann D. M., and Itzhaki R. F. (1991) Human neuroblastoma cells treated with aluminium express an epitope associated with Alzheimer’s disease neurofibrillary tangles. Neurosci. Lett. 121, 166–168.

    Article  PubMed  CAS  Google Scholar 

  • Hanas, J. S. and Gunn C. G. (1996) Inhibition of transcription factor IIIA-DNA interaction by xenobiotic metal ions. Nucleic Acids Res. 24, 924–930.

    Article  PubMed  CAS  Google Scholar 

  • Hantson P., Mahieu P., Gersdorff M., Sindic C., and Lauwerys R. (1995) Fatal encephalopathy after otoneurosurgery procedure with an aluminum-containing biomaterial. J. Toxicol. Clin. Toxicol. 33, 645–648.

    Article  PubMed  CAS  Google Scholar 

  • Hoang-Xuan K., Perrotte P., Dubas F., Philippon J., and Poisson F. M. (1996) Myoclonic encephalopathy after exposure to aluminum. Lancet 347, 910–911.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman P. N., Cleveland D. W., Griffin J. W., Landes P. W., Cowan N. J., and Price D. L. (1987) Neurofilament gene expression; a major determinant of axonal caliber. Proc. Natl. Acad. Sci. USA 84, 3472–3476.

    Article  PubMed  CAS  Google Scholar 

  • Itzhaki R. (1994) The aetiology of Alzheimer’s disease, in Chapter 3, Molecular and Cell Biology of Neuropsychiatric Diseases, vol. 3 (Owen F. and Itzhaki R., eds.), Chapman and Hall, London, pp. 55–91.

    Google Scholar 

  • Jeantet A. Y., Ballan-Dufrancais C., Petter C., and Truchet M. (1992) Mechanisms of cellular detoxication, nuclear aluminum concentration and hepatocyte protection after experimental overload in rats. C. R. Acad. Sci. III 315, 379–386.

    PubMed  CAS  Google Scholar 

  • Julka D., Vasishta R. K., and Gill K. D. (1996) Distribution of aluminum in different brain regions and body organs of rat. Biol. Trace Elem. Res. 52, 181–192.

    PubMed  CAS  Google Scholar 

  • Kadota T. and Kadota K. (1978) Neurofilament hypertrophy induced in the rabbit spinal cord after intracisternal injection of aluminum chloride. J. Toxicol. Sci. 3, 57–67.

    PubMed  CAS  Google Scholar 

  • Karlik S. J., Chong A. A., Eichhorn G. L., and De Boni U. (1989) Reversible toroidal compaction of DNA by aluminum. Neurotoxicology 10, 167–176.

    PubMed  CAS  Google Scholar 

  • Karlik S. J., Eichhorn G. L., Lewis P. N., and Crapper D. R. (1980) Interaction of aluminum species with deoxyribonucleic acid. Biochemistry 19, 5991–5998.

    Article  PubMed  CAS  Google Scholar 

  • Kasas, S., Thomson N. H., Smith B. L., Hansma H. G., Zhu X., Guthold, M., Bustamante C., Kool E. T., Kashlev M., and Hansma P. K. (1997) Escherichia coli RNA polymerase activity observed using atomic force microscopy. Biochemistry 36, 461–468.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S., Hirota N., Saito K., and Utsuyama M. (1987) Aluminum accumulation in tangle-bearing neurons of Alzheimer’s disease with Balint’s syndrome in a long term aluminum refiner. Acta Neuropathol. 74, 47–52.

    Article  PubMed  CAS  Google Scholar 

  • Kushelevsky A., Yagil R., Alfasi Z., and Berlyne G. M. (1976) Uptake of aluminum ion by the liver. Biomedicine 25, 59,60.

    PubMed  CAS  Google Scholar 

  • Lillie R. D., Donaldson P., Jirge S. K., and Pizzolato P. (1976) Iron and aluminum lakes of Gallo blue E as nuclear and metachromatic mucin stains. Stain Technol. 51, 187–192.

    PubMed  CAS  Google Scholar 

  • Llorente A. R., Del Castillo P., and Stockert J. C. (1989) Aluminium binding to chromatin DNA as revealed by formation of fluorescent complexes with 8-hydroxyquinoline and other ligands. J. Microsc. 155, 227–230.

    PubMed  CAS  Google Scholar 

  • Lovell M. A., Ehmann W. D., and Markesbery, W. R. (1993) Laser microprobe analysis of brain aluminum in Alzheimer’s disease. Ann. Neurol. 33, 36–42.

    Article  PubMed  CAS  Google Scholar 

  • Lukiw W. J. (1997) Aluminum in alzheimer’s disease, in Mineral and Metal Neurotoxicology (Yasui M., Strong M., Ota K., and Verity M. A., eds.), CRC, Boca Raton, FL, pp. 113–126.

    Google Scholar 

  • Lukiw W. J. and McLachlan D. R. C. (1995) Neurotoxicology of aluminum, in Handbook of Neurotoxicology II: Effects and Mechanisms, vol. 4 (Chang L. and Dyer R., eds.), Marcel Dekker, New York, 105–142.

    Google Scholar 

  • Lukiw W. J., Bergeron C., Wong L., Kruck T. P. A., Krishnan B., and McLachlan D. R. C. (1992) Nuclear compartmentalization of aluminum in Alzheimer’s disease (AD). Neurobiol. Aging 13, 115–121.

    Article  PubMed  CAS  Google Scholar 

  • Lukiw W. J., Kruck T. P. A., and McLachlan D. R. C. (1987) Alterations in human linker histone-DNA binding in the presence of aluminum salts in vitro and in Alzheimer’s disease. Neurotoxicology 8, 291–302.

    PubMed  CAS  Google Scholar 

  • Lukiw W. J., Kruck T. P. A., and McLachlan D. R. C. (1989a) Linker histone-DNA complexes; enhanced stability in the presence of aluminum lactate and implications for Alzheimer’s disease. FEBS Lett. 253, 59–62.

    Article  PubMed  CAS  Google Scholar 

  • Lukiw W. J., Kruck T. P. A., and McLachlan D. R. C. (1989b) Aluminum, intracellular liganding and the nucleus. Lancet 1, 781.

    Article  PubMed  CAS  Google Scholar 

  • Lukiw W. J., Rogaev E. I., and Bazan N. G. (1996) Synaptic and cytoskeletal RNA message levels in sporadic Alzheimer neocortex. Alzheimer’s Res. 2, 221–227.

    Google Scholar 

  • Lukiw W. J., St. George-Hyslop P., and McLachlan D. R. C. (1994) Chromatin structure, nuclear aluminum and gene expression in Alzheimer’s disease, in Basic and Clinical Aspects of Neuroscience, vol. 6, Regulation of Gene Expression and Brain Function, Sandoz/Springer-Verlag, New York, pp. 31–45.

    Google Scholar 

  • Marcheselli V. L. and Bazan N. G. (1996) Sustained induction of prostaglandin endoperoxide synthase-2 by seizures in hippocampus. Inhibition by a platelet-activating factor antagonist. J. Biol. Chem. 271, 24,794–24,799.

    CAS  Google Scholar 

  • Martin R. B. (1992) Aluminium speciation in biology. Ciba Found. Symp. 169, 5–18.

    PubMed  Google Scholar 

  • Muma N. A. and Singer S. M. (1996) Aluminum-induced neuropathology: transient changes in microtubule-associated proteins. Neurotoxicol. Teratol. 18, 679–690.

    Article  PubMed  CAS  Google Scholar 

  • Muma N. A., Troncoso J. C., Hoffman P. N., Koo E. H., and Price D. L. (1988) Aluminum neurotoxicity: altered expression of cytoskeletal genes. Brain Res. 427, 115–121.

    PubMed  CAS  Google Scholar 

  • Mundy W. R., Freudenrich T. M., and Kodavanti P. R. (1997) Aluminum potentiates glutamate-induced calcium accumulation and iron-induced oxygen free radical formation in primary neuronal cultures. Mol. Chem. Neuropathol. 32, 41–57.

    PubMed  CAS  Google Scholar 

  • Nayak P. and Chatterjee A. K. (1998) Impact of protein malnutrition on subcellular nucleic acid and protein status of brain of aluminum-exposed rats. J. Toxicol. Sci. 23, 1–14.

    PubMed  CAS  Google Scholar 

  • Niedziela G. and Aniol A. (1983) Subcellular distribution of aluminum in wheat roots. Acta Biochim. Pol. 30, 99–105.

    PubMed  CAS  Google Scholar 

  • Oikarinen J., Mannermaa R. M., Tarkka T., Yli-Mayry N., and Majamaa K. (1991) Interference of AlF4-with nucleotide and DNA binding of rat histone H1 in vitro: implications for the pathogenesis of Alzheimer’s disease. Neurosci. Lett. 132, 171–174.

    Article  PubMed  CAS  Google Scholar 

  • Parhad I. M., Krekoski C. A., Mathew A., and Tran P. M. (1989) Neuronal gene expression in aluminum myelopathy. Cell. Mol. Neurobiol. 9, 123–138.

    Article  PubMed  CAS  Google Scholar 

  • Perl D. P. and Pendlebury W. W. (1984) Aluminum accumulation in neurofibrillary tangle-bearing neurons of senile dementia, Alzheimer’s type: detection by intraneuronal X-ray spectrometry studies of unstained tissue sections. J. Neuropathol. Exp. Neurol. 43, 349–359.

    Google Scholar 

  • Perl D. P., Gajdusek D. C., Garruto R. M., Yanagihara R. T., and Gibbs C. J. (1982) Intraneuronal aluminum accumulation in amyotrophic lateral sclerosis and Parkinsonism-dementia of Guam. Science 217, 1053–1055.

    Article  PubMed  CAS  Google Scholar 

  • Pesole G., Sbisa E., Mignotte F., and Saccone C. (1991) The branching order of mammals: phylogenetic trees inferred from nuclear and mitochondrial molecular data. J. Mol. Evolut. 33, 537–542.

    Article  CAS  Google Scholar 

  • Roeder R. G. and Rutter W. J. (1970) Specific nucleolar and nucleoplasmic RNA polymerases. Proc. Natl. Acad. Sci. USA 65, 675–682.

    Article  PubMed  CAS  Google Scholar 

  • Sabouraud O., Chatel M., Menault F., Dien Peron J., Cartier F., Garre M., Gary J., and Pecker S. (1978) Progressive myoclonic encephalopathy in dialysis patients. Clinical, electroencephalographic and neuropathological study. Rev. Neurol. (Paris) 134, 575–600.

    CAS  Google Scholar 

  • Sanderson C., McLachlan D. R. C., and De Boni U. (1982) Inhibition of corticosterone binding in vitro, in rabbit hippocampus, by chromatin bound aluminum. Acta Neuropathol. (Berl.) 57, 249–254.

    Article  CAS  Google Scholar 

  • Sarkander H. I., Balb G., Schlosser H., Stoltenburg G., and Lux R. M. (1983) Blockade of neuronal brain RNA initiation sites by aluminum: a primary molecular mechanism of aluminum-induced neurofibrillary changes? in Brain Aging: Neuropathology and Neuropharmacology, (Cervos-Navarro J. and Sarkander H. I., eds.), Raven, New York, pp. 259–274.

    Google Scholar 

  • Schmid C. W. and Jelinek W. R. (1982) The Alu family of dispersed repetitive sequences. Science 216, 1065–1070.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu H., Mori T., Koyama M., Sekiya M., and Ooami H. (1994) A correlative study of the aluminum content and aging changes of the brain in non-demented elderly subjects. Nippon Ronen Igakkai Zasshi 31, 950–960.

    PubMed  CAS  Google Scholar 

  • Singer S. M., Chambers C. B., Newfry G. A., Norlund M. A., and Muma N. A. (1997) Tau in aluminum-induced neurofibrillary tangles. Neurotoxicology 18, 63–76.

    PubMed  CAS  Google Scholar 

  • Somova L. I., Missankov A., and Khan M. S. (1997) Chronic aluminum intoxication in rats: dose-dependent morphological changes. Methods Find. Exp. Clin. Pharmacol. 19, 599–604.

    PubMed  CAS  Google Scholar 

  • St. George-Hyslop P. (1995) Genetic determinants of Alzheimer disease. Prog. Clin. Biol. Res. 393, 139–145.

    PubMed  CAS  Google Scholar 

  • Stockert J. C. (1979) Observations on the chromatin staining by aluminum-hematoxylin. Z. Naturforsch. 34, 1285, 1286.

    CAS  Google Scholar 

  • Tanzi R. E., Kovacs D. M., Kim T. W., Moir R. D., Guenette S. Y., and Wasco W. (1996) The gene defects responsible for familial Alzheimer’s disease. Neurobiol. Dis. 3, 159–168.

    Article  PubMed  CAS  Google Scholar 

  • Thompson R. J. (1973) Studies on RNA synthesis in two populations of nuclei from the mammalian cerebral cortex. J. Neurochem. 21, 19–40.

    Article  PubMed  CAS  Google Scholar 

  • Tokutake S., Nagase H., Morisaki S., and Oyanagi S. (1995) Aluminium detected in senile plaques and neurofibrillary tangles is contained in lipofuscin granules with silicon, probably as aluminosilicate. Neurosci. Lett. 185, 99–102.

    Article  PubMed  CAS  Google Scholar 

  • Troncoso J., March J. L., Haner M., and Aebi U. (1990) Effect of aluminum and other multivalent cations on neurofilaments in vitro: an electron microscopic study. J. Struct. Biol. 103, 2–12.

    Article  PubMed  CAS  Google Scholar 

  • Truchet M. (1976) Demonstration by electron probe microanalysis and by ionic microanalysis of nuclear localization of aluminum of various cells. C. R. Acad. Sci. Hebd. Seances Acad. Sci. D. 282, 1785–1788.

    PubMed  CAS  Google Scholar 

  • Truchet M., Jeantet A. Y., and Petter C. (1987) Cell nucleus intervention in aluminum concentration by rat liver cells. C. R. Acad. Sci. III 305, 259–263.

    PubMed  CAS  Google Scholar 

  • Uemura E. (1984) Intranuclear aluminum accumulation in chronic animals with experimental neurofibrillary changes. Exp. Neurol. 85, 10–18.

    Article  PubMed  CAS  Google Scholar 

  • Van Leeuwen F. W., de Kleijn D. P. V., van den Hurk H. H., Neubauer A., Sonnemans M. A. F., Sluijs J. A., Koycu S., Ramdjielal R. D. J., Salehi A., Martens G. J. M., Grosveld F. G., Burbach P. H., and Hol E. M. (1998) Frameshift mutants of B-amyloid precursor protein and ubiquitin-B in Alzheimers and Downs patients. Science 279, 242–247.

    Article  PubMed  Google Scholar 

  • Walker P. R., LeBlanc J., and Sikorska M. (1989) Effects of aluminum and other cations on the structure of brain and liver chromatin. Biochemistry 28, 3911–3915.

    Article  PubMed  CAS  Google Scholar 

  • Yasui M., Kihira T., and Ota K. (1992) Calcium, magnesium and aluminum concentrations in Parkinson’s disease. Neurotoxicology 13, 593–600.

    PubMed  CAS  Google Scholar 

  • Yasui M., Ota K., and Yoshida M. (1997) Effects of low calcium and magnesium dietary intake on the central nervous system tissues of rats and calcium-magnesium related disorders in the amyotrophic lateral sclerosis focus in the Kii Peninsula of Japan. Magnes. Res. 10, 39–50.

    PubMed  CAS  Google Scholar 

  • Yoshida S. (1991) Environmental factors in western Pacific foci of ALS and a possible pathogenetic role of aluminum (Al) in motor neuron degeneration. Rinsho Shinkeigaku 31, 1310–1312.

    PubMed  CAS  Google Scholar 

  • Yoshida S., Mitani K., Wakayama I., Kihira T., and Yase Y. (1995) Bunina body formation in amyotrophic lateral sclerosis: a morphometric-statistical and trace element study featuring aluminum. J. Neurol. Sci. 130, 88–94.

    Article  PubMed  CAS  Google Scholar 

  • Yumoto S., Kakimi S., Matsushima H., Ishikawa A., and Mizutani T. (1998) Aluminum accumulation in the brains of patients with Alzheimer’s disease. Abstract 1139, 6th International Conference on Alzheimer’s Disease and Related Disorders, 18–23 July, Amsterdam, The Netherlands.

  • Zhang Y. (1995) Effects of aluminum chloride on the nucleus and nucleolus in root tip cells of Hordeum vulgare. Mutat. Res. 335, 137–142.

    PubMed  CAS  Google Scholar 

  • Zubenko G. S., Stiffler J. S., Hughes H. B., Hurtt M. R., and Kaplan B. B. (1998) Initial results of a genome survey for novel Alzheimer’s disease risk genes: association with a locus on the X chromosome. Am. J. Med. Genet. 81, 98–107.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukiw, W.J., LeBlanc, H.J., Carver, L.A. et al. Run-on gene transcription in human neocortical nuclei. J Mol Neurosci 11, 67–78 (1998). https://doi.org/10.1385/JMN:11:1:67

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:11:1:67

Index Entries

Navigation