Advertisement

Immunologic Research

, Volume 35, Issue 1–2, pp 163–177 | Cite as

Double-negative regulatory T cells

Non-conventional regulators
  • Christopher W. Thomson
  • Boris P. -L. Lee
  • Li Zhang
Article

Abstract

The crucial role of regulatory T (Treg) cells in self-tolerance and downregulating immune response has been clearly established. Numerous different Treg subsets have been identified that possess distinct phenotypes and functions in various disease models. Among these subsets, αβ-TCR+CD3+CD4CD8 double-negative (DN) Treg cells have been shown to be able to inhibit a variety of immune responses in part via direct killing of effector T cells in an antigen-specific manner in both mice and humans. This was shown to occur at least partially by acquisition of MHC-peptide complexes from antigen-presenting cells (APCs) and subsequent Fas/Fas-ligand interactions. In addition, DN Treg cells have been shown to express several molecules uncommon to other Treg cell subsets, such as IFN-γ, TNF-α, Ly6A, FcRγ, and CXCR5, which may contribute to their unique regulatory ability. Understanding the development and regulatory functions of DN Treg cells may elucidate the etiology for loss of self-tolerance and serve as a therapeutic modality for various diseases. This review will summarize the characteristics, developmental pathways, and mechanisms of action of DN Treg cells, as well as their role in transplant tolerance, autoimmunity, and anticancer immunity.

Key Words

Regulatory T cells Suppression Tolerance Transplantation Cancer immunotherapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sakaguchi S: Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004;22: 531–562.PubMedCrossRefGoogle Scholar
  2. 2.
    Mills KH: Regulatory T cells: friend or foe in immunity to infection?. Nat Rev Immunol 2004;4:841–855.PubMedCrossRefGoogle Scholar
  3. 3.
    Wood KJ, Sakaguchi S: Regulatory T cells in transplantation tolerance. Nat Rev Immunol 2003;3:199–210.PubMedCrossRefGoogle Scholar
  4. 4.
    Shevach EM: Regulatory T cells in autoimmunity. Annu Rev Immunol 2000;18:423–449.PubMedCrossRefGoogle Scholar
  5. 5.
    Sutmuller RP, van Duivenvoorde LM, van Elsas A, et al: Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 2001;194:823–832.PubMedCrossRefGoogle Scholar
  6. 6.
    Young KJ, Kay LS, Phillips MJ, Zhang L: Antitumor activity mediated by double-negative T cells. Cancer Res 2003;63:8014–8021.PubMedGoogle Scholar
  7. 7.
    Singh B, Read S, Asseman C, et al: Control of intestinal inflammation by regulatory T cells. Immunol Rev 2001;182:190–200.PubMedCrossRefGoogle Scholar
  8. 8.
    Akbari O, Stock P, DeKruyff RH, Umetsu DT: Role of regulatory T cells in allergy and asthma. Curr Opin Immunol 2003;15:627–633.PubMedCrossRefGoogle Scholar
  9. 9.
    Edinger M, Hoffmann P, Ermann J, et al: CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med 2003;9:1144–1150.PubMedCrossRefGoogle Scholar
  10. 10.
    Young KJ, DuTemple B, Phillips MJ, Zhang L: Inhibition of graft-versus-host disease by double-negative regulatory T cells. J Immunol 2003;171:134–141.PubMedGoogle Scholar
  11. 11.
    Bach JF: Regulatory T cells under scrutiny. Nat Rev Immunol 2003;3:189–198.PubMedCrossRefGoogle Scholar
  12. 12.
    Shevach EM: CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2002;2: 389–400.PubMedGoogle Scholar
  13. 13.
    Hori S, Nomura T, Sakaguchi S: Control of regulatory T cell development by the transcription factor Foxp3. Science 2003;299:1057–1061.PubMedCrossRefGoogle Scholar
  14. 14.
    Najafian N, Chitnis T, Salama AD, et al: Regulatory functions of CD8+. J Clin Invest 2003;112:1037–1048.PubMedCrossRefGoogle Scholar
  15. 15.
    Hayday A, Tigelaar R: Immunoregulation in the tissues by gammadelta T cells. Nat Rev Immunol 2003;3: 233–242.PubMedCrossRefGoogle Scholar
  16. 16.
    Battaglia M, Roncarolo MG: The role of cytokines (and not only) in inducing and expanding T regulatory type 1 cells. Transplantation 2004;77:S16-S18.PubMedCrossRefGoogle Scholar
  17. 17.
    Weiner HL: Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol Rev 2001;182:207–214.PubMedCrossRefGoogle Scholar
  18. 18.
    Kronenberg, M.: Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 2005;23:877–900.PubMedCrossRefGoogle Scholar
  19. 19.
    George JF, Thomas JM: The molecular mechanisms of veto mediated regulation of alloresponsiveness. J Mol Med 1999;77:519–526.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang ZX, Yang L, Young KJ, DuTemple B, Zhang L: Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression. Nat Med 2000;6:782–789.PubMedCrossRefGoogle Scholar
  21. 21.
    Fischer K, Voelkl S, Heymann J, et al: Isolation and characterization of human antigen-specific TCR alpha beta+ CD4(−)CD8− double-negative regulatory T cells. Blood 2005;105:2828–2835.PubMedCrossRefGoogle Scholar
  22. 22.
    Priatel JJ, Utting O, Teh HS: TCR/self-antigen interactions drive double-negative T cell peripheral expansion and differentiation into suppressor cells. J Immunol 2001;167:6188–6194.PubMedGoogle Scholar
  23. 23.
    Chen W, Ford MS, Young KJ, Cybulsky MI, Zhang L: Role of double-negative regulatory T cells in long-term cardiac xenograft survival. J Immunol 2003;170:1846–1853.PubMedGoogle Scholar
  24. 24.
    Chen W, Zhou D, Torrealba JR, Waddell TK, Grant D, Zhang L: Donor lymphocyte infusion induces long-term donor-specific cardiac xenograft survival through activation of recipient double-negative regulatory t cells. J Immunol 2005;175:3409–3416.PubMedGoogle Scholar
  25. 25.
    Ford MS, Young KJ, Zhang Z, Ohashi PS, Zhang L: The immune regulatory function of lymphoproliferative double negative T cells in vitro and in vivo. J Exp Med 2002;196:261–267.PubMedCrossRefGoogle Scholar
  26. 26.
    Young KJ, Yang L, Phillips MJ, Zhang L: Donor-lymphocyte infusion induces transplantation tolerance by activating systemic and graft-infiltrating double-negative regulatory T cells. Blood 2002;100:3408–3414.PubMedCrossRefGoogle Scholar
  27. 27.
    Pennington DJ, Silva-Santos B, Hayday AC: Gammadelta T cell development—having the strength to get there. Curr Opin Immunol 2005;17:108–115.PubMedCrossRefGoogle Scholar
  28. 28.
    Wang R, Wang-Zhu Y, Grey H: Interactions between double positive thymocytes and high affinity ligands presented by cortical epithelial cells generate double negative thymocytes with T cell regulatory activity. Proc Natl Acad Sci USA 2002;99:2181–2186.PubMedCrossRefGoogle Scholar
  29. 29.
    Marra LE, Zhang ZX, Joe B, et al: IL-10 induces regulatory T cell apoptosis by up-regulation of the membrane form of TNF-alpha. J Immunol 2004;172:1028–1035.PubMedGoogle Scholar
  30. 30.
    Landolfi MM, Van Houten N, Russell JQ, Scollay R, Parnes JR, Budd RC: CD2-CD4-CD8- lymph node T lymphocytes in MRL lpr/lpr mice are derived from a CD2+CD4+CD8+ thymic precursor. J Immunol 1993;151:1086–1096.PubMedGoogle Scholar
  31. 31.
    Takahama Y, Kosugi A, Singer A: Phenotype, ontogeny, and repertoire of CD4-CD8-T cell receptor alpha beta+ thymocytes. Variable influence of self-antigens on T cell receptor V beta usage. J Immunol 1991;146:1134–1141.PubMedGoogle Scholar
  32. 32.
    Yamagiwa S, Sugahara S, Shimizu T, et al: The primary site of CD4-8-B220+ alphabeta T cells in lpr mice: the appendix in normal mice. J Immunol 1998;160: 2665–2674.PubMedGoogle Scholar
  33. 33.
    Palathumpat V, Dejbakhsh-Jones S, Holm B, Strober S: Different subsets of T cells in the adult mouse bone marrow and spleen induce or suppress acute graft-versus-host disease. J Immunol 1992;149:808–817.PubMedGoogle Scholar
  34. 34.
    Ohteki T, Seki S, Abo T, Kumagai K: Liver is a possible site for the proliferation of abnormal CD3+4-8-double-negative lymphocytes in autoimmune MRL-lpr/lpr mice. J Exp Med 1990;172:7–12.PubMedCrossRefGoogle Scholar
  35. 35.
    Kubota H, Okazaki H, Onuma M, Kano S, Hattori M, Minato N: CD3+4-8-alpha beta T cell population with biased T cell receptor V gene usage. Presence in bone marrow and possible involvement of IL-3 for their extrathymic development. J Immunol 1992;149:1143–1150.PubMedGoogle Scholar
  36. 36.
    Zhang ZX, Stanford WL, Zhang L: Ly-6A is critical for the function of double negative regulatory T cells. Eur J Immunol 2002;32:1584–1592.PubMedCrossRefGoogle Scholar
  37. 37.
    Lee BP, Mansfield E, Hsieh SC, et al: Expression profiling of murine double-negative regulatory T cells suggest mechanisms for prolonged cardiac allograft survival. J Immunol 2005;174:4535–4544.PubMedGoogle Scholar
  38. 38.
    Takahashi T, Kuniyasu Y, Toda M, et al: Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 1998;10:1969–1980.PubMedCrossRefGoogle Scholar
  39. 39.
    Thornton AM, Shevach EM: CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 1998;188:287–296.PubMedCrossRefGoogle Scholar
  40. 40.
    Young KJ, Zhang L: The nature and mechanisms of DN regulatory T-cell mediated suppression. Hum Immunol 2002;63:926–934.PubMedCrossRefGoogle Scholar
  41. 41.
    Nishimura E, Sakihama T, Setoguchi R, Tanaka K, Sakaguchi S: Induction of antigen-specific immunologic tolerance by in vivo and in vitro antigen-specific expansion of naturally arising Foxp3+CD25+CD4+ regulatory T cells. Int Immunol 2004;16:1189–1201.PubMedCrossRefGoogle Scholar
  42. 42.
    Furtado GC, Curotto de Lafaille MA, Kutchukhidze N, Lafaille JJ: Interleukin 2 signaling is required for CD4(+) regulatory T cell function. J Exp Med 2002;196:851–857.PubMedCrossRefGoogle Scholar
  43. 43.
    Groux H, O'Garra A, Bigler M, et al: A CD4+ T-scell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997;389:737–742.PubMedCrossRefGoogle Scholar
  44. 44.
    Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL: Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 1994;265:1237–1240.PubMedCrossRefGoogle Scholar
  45. 45.
    van Twuyver E, Kast WM, Mooijaart RJ, Melief CJ, De Waal LP: Induction of transplantation tolerance by intravenous injection of allogeneic lymphocytes across an H-2 class II mismatch. Different mechanisms operate in tolerization across an H-2 class I vs. H-2 class II disparity. Eur J Immunol 1990;20:441–444.PubMedCrossRefGoogle Scholar
  46. 46.
    Yang L, Du TB, Khan Q, Zhang L: Mechanisms of long-term donor-specific allograft survival induced by pretransplant infusion of lymphocytes. Blood 1998;91: 324–330.PubMedGoogle Scholar
  47. 47.
    Chen W, Ford MS, Young KJ, Zhang L: Infusion of in vitro-generated DN T regulatory cells induces permanent cardiac allograft survival in mice. Transplant Proc 2003;35:2479–2480.PubMedCrossRefGoogle Scholar
  48. 48.
    Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M: Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995;155:1151–1164.PubMedGoogle Scholar
  49. 49.
    Viret C, Janeway CA, Jr.: Self-sspecific MHC class II-restricted CD4-CD8-T cells that escape deletion and lack regulatory activity. J Immunol 2003;170:201–209.PubMedGoogle Scholar
  50. 50.
    Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S: Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 1992;356:314–317.PubMedCrossRefGoogle Scholar
  51. 51.
    Benihoud K, Bonardelle D, Bobe P, Kiger N: MRL/lpr CD4-CD8- and CD8+ T cells, respectively, mediate Fas-dependent and perforin cytotoxic pathways. Eur J Immunol 1997;27:415–420.PubMedCrossRefGoogle Scholar
  52. 52.
    Straus SE, Sneller M, Lenardo MJ, Puck JM, Strober W: An inherited disorder of lymphocyte apoptosis: the autoimmune lymphoproliferative syndrome. Ann Intern Med 1999;130:591–601.PubMedGoogle Scholar
  53. 53.
    Lenardo M, Chan KM, Hornung F, et al: Mature T lymphocyte apoptosis—immune regulation in a dynamic and unpredictable antigenic environment. Annu Rev Immunol 1999;17:221–253.PubMedCrossRefGoogle Scholar
  54. 54.
    Martinez C, Marcos MA, de Alboran IM, et al: Functional double-negative T cells in the periphery express T cell receptor V beta gene products that cause deletion of single-positive T cells. Eur J Immunol 1993;23:250–254.PubMedCrossRefGoogle Scholar
  55. 55.
    Zhou G, Drake CG, Levitsky HI: Amplification of tumor-specific regulatory T cells following therapeutic cancer vaccines. Blood 2006;107:628–636.PubMedCrossRefGoogle Scholar
  56. 56.
    Li X, Ye DF, Xie X, Chen HZ, Lu WG: Proportion of CD4+CD25+ regulatory T cell is increased in the patients with ovarian carcinoma. Cancer Invest 2005;23:399–403.PubMedGoogle Scholar
  57. 57.
    Van Meirvenne S, Dullaers M, Heirman C, Straetman L, Michiels A, Thielemans K: In vivo depletion of CD4+CD25+ regulatory t cells enhances the antigen-pecific primary and memory CTL response elicited by mature mRNA-electroporated dendritic cells. Mol Ther 2005;12:922–932.PubMedCrossRefGoogle Scholar
  58. 58.
    Ghiringhelli F, Menard C, Terme M, et al: CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 2005;202:1075–1085.PubMedCrossRefGoogle Scholar
  59. 59.
    Erdman SE, Sohn JJ, Rao VP, et al: CD4+CD25+ regulatory lymphocytes induce regression of intestinal tumors in ApcMin/+ mice. Cancer Res 2005;65:3998–4004.PubMedCrossRefGoogle Scholar
  60. 60.
    Erdman SE, Rao VP, Poutahidis T, et al: CD4(+) CD25(+) regulatory lymphocytes require interleukin 10 to interrupt colon carcinogenesis in mice. Cancer Res 2003;63:6042–6050.PubMedGoogle Scholar
  61. 61.
    Abraham VS, Sachs DH, Sykes M: Mechanism of protection from graft-versus-host disease mortality by IL-2. III. Early reductions in donor T cell subsets and expansion of a CD3+CD4-CD8- cell population. J Immunol 1992;148:3746–3752.PubMedGoogle Scholar
  62. 62.
    Young KJ, DuTemple B, Zhang Z, Levy G, Zhang L: CD4(−)CD8(−) regulatory T cells implicated in preventing graft-versus-host and promoting graft-versus-leukemia responses. Transplant Proc 2001;33:1762–1763.PubMedCrossRefGoogle Scholar
  63. 63.
    Matsuo R, Herndon DN, Kobayashi M, Pollard RB, Suzuki F: CD4- CD8- TCR alpha/beta+ suppressor T cells demonstrated in mice 1 day after thermal injury. J Trauma 1997;42:635–640.PubMedCrossRefGoogle Scholar
  64. 64.
    Kadena T, Matsuzaki G, Fujise S, et al: TCR alpha beta+ CD4- CD8-T cells differentiate extrathymically in an lck-independent manner and participate in early response against Listeria monocytogenes infection through interferon-gamma production. Immunology 1997;91:511–519.PubMedCrossRefGoogle Scholar
  65. 65.
    Hossain MS, Takimoto H, Ninomiya T, et al: Characterization of CD4- CD8- CD3+ T-cell receptor-alphabeta+ T cells in murine cytomegalovirus infection. Immunology 2000;101:19–29.PubMedCrossRefGoogle Scholar
  66. 66.
    Johansson M, Lycke N: A unique population of extrathymically derived alpha beta TCR+CD4-CD8- T cells with regulatory functions dominates the mouse female genital tract. J Immunol 2003;170:1659–1666.PubMedGoogle Scholar
  67. 67.
    Thornton AM, Shevach EM: Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol 2000;164:183–190.PubMedGoogle Scholar
  68. 68.
    Dai Z, Li Q, Wang Y, et al: CD4+CD25+ regulatory T cells suppress allograft rejection mediated by memory CD8+ T cells via a CD30-dependent mechanism. J Clin Invest 2004;113:310–317.PubMedCrossRefGoogle Scholar
  69. 69.
    Tanchot C, Vasseur F, Pontoux C, Garcia C, Sarukhan A: Immune regulation by self-reactive T cells is antigen specific. J Immunol 2004;172:4285–4291.PubMedGoogle Scholar
  70. 70.
    Hudrisier D, Riond J, Mazarguil H, Gairin JE, Joly E: Cutting edge: CTLs rapidly capture membrane fragments from target cells in a TCR signaling-dependent manner. J Immunol 2001;166:3645–3649.PubMedGoogle Scholar
  71. 71.
    Stinchcombe JC, Bossi G, Booth S, Griffiths GM: The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 2001;15: 751–761.PubMedCrossRefGoogle Scholar
  72. 72.
    Hwang I, Huang JF, Kishimoto H, et al: T cells can use either T cell receptor or CD28 receptors to absorb and internalize cell surface molecules derived from antigen-presenting cells. J Exp Med 2000;191:1137–1148.PubMedCrossRefGoogle Scholar
  73. 73.
    Sabzevari H, Kantor J, Jaigirdar A, et al: Acquisition of CD80 (B7-1) by T cells. J Immunol 2001;166: 2505–2513.PubMedGoogle Scholar
  74. 74.
    Patel DM, Arnold PY, White GA, Nardella JP, Mannie MD: Class II MHC/peptide complexes are released from APC and are acquired by T cell responders during specific antigen recognition. J Immunol 1999;163: 5201–5210.PubMedGoogle Scholar
  75. 75.
    Huang JF, Yang Y, Sepulveda H, et al: TCR-Mediated internalization of peptide-MHC complexes acquired by T cells. Science 1999;286:952–954.PubMedCrossRefGoogle Scholar
  76. 76.
    Tsang JY, Chai JG, Lechler R: Antigen presentation by mouse CD4+ T cells involving acquired MHC class II: peptide complexes: another mechanism to limit clonal expansion?. Blood 2003;101:2704–2710.PubMedCrossRefGoogle Scholar
  77. 77.
    Batista FD, Iber D, Neuberger MS: B cells acquire antigen from target cells after synapse formation. Nature 2001;411:489–494.PubMedCrossRefGoogle Scholar
  78. 78.
    Harshyne LA, Watkins SC, Gambotto A, Barratt-Boyes, SM: Dendritic cells acquire antigens from live cells for cross-presentation to CTL. J Immunol 2001;166: 3717–3723.PubMedGoogle Scholar
  79. 79.
    Daeron M: Fc receptor biology. Annu Rev Immunol 1997;15:203–234.PubMedCrossRefGoogle Scholar
  80. 80.
    Koyasu S, D'Adamio L, Arulanandam AR, Abraham S, Clayton LK, Reinherz EL: T cell receptor complexes containing Fc epsilon RI gamma homodimers in lieu of CD3 zeta and CD3 eta components: a novel isoform expressed on large granular lymphocytes. J Exp Med 1992;175:203–209.PubMedCrossRefGoogle Scholar
  81. 81.
    Green DR, Droin N, Pinkoski M: Activation-induced cell death in T cells. Immunol Rev 2003;193:70–81.PubMedCrossRefGoogle Scholar
  82. 82.
    Hamad AR, Mohamood AS, Trujillo CJ, Huang CT, Yuan E, Schneck JP: B220+ double-negative T cells suppress polyclonal T cell activation by a Fas-independent mechanism that involves inhibition of IL-2 production. J Immunol 2003;171:2421–2426.PubMedGoogle Scholar
  83. 83.
    Powrie F, Carlino J, Leach MW, Mauze S, Coffman RL: A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J Exp Med 1996;183:2669–2674.PubMedCrossRefGoogle Scholar
  84. 84.
    Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F: An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 1999;190:995–1004.PubMedCrossRefGoogle Scholar
  85. 85.
    Seddon B, Mason D: Regulatory T cells in the control of autoimmunity: the essential role of transforming growth factor beta and interleukin 4 in the prevention of autoimmune thyroiditis in rats by peripheral CD4(+)CD. J Exp Med 1999;189:279–288.PubMedCrossRefGoogle Scholar
  86. 86.
    Sawitzki B, Kingsley CI, Oliveira V, Karim M, Herber M, Wood, KJ: IFN-sgamma production by alloantigen-reactive regulatory T cells is important for their regulatory function in vivo. J Exp Med 2005;201:1925–1935.PubMedCrossRefGoogle Scholar
  87. 87.
    Ansel KM, McHeyzer-Williams LL, Ngo VN, McHeyzer-Williams MG, Cyster JG: In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J Exp Med 1999;190:1123–1134.PubMedCrossRefGoogle Scholar
  88. 88.
    Khan Q, Penninger JM, Yang L, Marra LE, Kozieradzki I, Zhang L: Regulation of apoptosis in mature alpha-beta+CD4-CD8-antigen-specific suppressor T cell clones. J Immunol 1999;162:5860–5867.PubMedGoogle Scholar
  89. 89.
    Lee BP, Chen W, Shi H, Der SD, Forster R, Zhang L: CXCR5/CXCL13 interaction is important for double-negative T cell homing to cardiac allografts. J Immunol 2006;176:5276–5283.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Christopher W. Thomson
    • 1
  • Boris P. -L. Lee
    • 1
  • Li Zhang
    • 2
  1. 1.Department of Laboratory Medicine and Pathobiology, Multi Organ Transplantation Program, Toronto General Research Institute, University Health NetworkUniversity of TorontoTorontoCanada
  2. 2.Department of ImmunologyUniversity of TorontoTorontoCanada

Personalised recommendations