Immunologic Research

, Volume 27, Issue 2–3, pp 303–308 | Cite as

Structure-based approaches to inhibition of erbB receptors with peptide mimetics

  • Alan Berezov
  • Mark I. Greene
  • Ramachandran Murali


The epidermal growth factor (EGF) family of tyrosine kinase receptors (erbB receptors) are expressed at high levels in a wide variety of human cancers and have been associated with various features of advanced disease and poor prognosis. Therapeutic blockade of erbB signaling is a novel approach to the treatment of human tumors that could offer a noncytotoxic alternative to cancer treatment. A number of monoclonal antibodies (MAbs) directed against erbB receptors have been developed and demonstrated promising therapeutic results. We have designed small-molecule peptide mimetics of an anti-erbB rhu MAb 4D5 that can mimic structural and functional properties of the parental antibody. An alternative structure-based strategy of erbB receptor blockade with peptide mimetics by targeting receptor dimerization interfaces is also described.

Key Words

Antibodies Inhibitors HER2 Disabling erbB receptor ensembles Structure-based design Peptidomimetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bajaj M, Waterfield MD, Schlessinger J, Taylor WR, Blundell T: On the tertiary structure of the extracellular domains of the epidermal growth factor and insulin receptors. Biochim Biophys Acta 1987;916:220–226.PubMedGoogle Scholar
  2. 2.
    Ward CW, Hoyne PA, Flegg RH: Insulin and epidermal growth factor receptors contain the cysteine repeat motif found in the tumor necrosis factor receptor. Proteins 1995;22:141–153.CrossRefPubMedGoogle Scholar
  3. 3.
    Klapper LN, Kirschbaum MH, Sela M, Yarden Y: Biochemical and clinical implications of the erbb/her signaling network of growth factor receptors. Adv Cancer Res 2000;77:25–79.PubMedCrossRefGoogle Scholar
  4. 4.
    de Bono JS, Rowinsky EK: The erbb receptor family: A therapeutic target for cancer. Trends Mol Med 2002;8:S19-S26.CrossRefPubMedGoogle Scholar
  5. 5.
    Drebin JA, Link VC, Greene MI: Monoclonal antibodies reactive with distinct domains of the neu oncogene-encoded pl85 molecule exert synergistic anti-tumor effects in vivo. Oncogene 1988;2:273–277.PubMedGoogle Scholar
  6. 6.
    Murali R, Greene MI: Structure-based design of immunologically active therapeutic peptides. Immunol Res 1998;17:163–169.PubMedGoogle Scholar
  7. 7.
    O'Rourke DM, Greene MI: Immunologic approaches to inhibiting cell-surface-residing oncoproteins in human tumors. Immunol Res 1998;17:179–189.PubMedGoogle Scholar
  8. 8.
    O'Rourke DM, Kao GD, Singh N, Park BW, Muschel RJ, Wu CJ, Greene MI: Conversion of a radioresistant phenotype to a more sensitive one by disabling erbb receptor signaling in human cancer cells. Proc Natl Acad Sci USA 1998;95:10,842–10,847.CrossRefGoogle Scholar
  9. 9.
    O'Rourke DM, Nute EJ, Davis JG, Wu C, Lee A, Murali R, et al: Inhibition of a naturally occurring egfr oncoprotein by the p185neu ectodomain: Implications for subdomain contributions to receptor assembly. Oncogene 1998;16:1197–1207.CrossRefPubMedGoogle Scholar
  10. 10.
    Wels W, Harwerth IM, Mueller M, Groner B, Hynes NE: Selective inhibition of tumor cell growth by a recombinant single-chain antibody-toxin specific for the erbb-2 receptor. Cancer Res 1992; 52:6310–6317.PubMedGoogle Scholar
  11. 11.
    Wels W, Harwerth IM, Hynes NE, Groner B: Diminution of antibodies directed against tumor cell surface epitopes: A single chain fy fusion molecule specifically recognizes the extracellular domain of the c-erbb-2 receptor. J Steroid Biochem Mol Biol 1992;43:1–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Xu FJ, Boyer CM, Bae DS, Wu S, Greenwald M, O'Briant K, et al.: The tyrosine kinase activity of the c-erbb-2 gene product (pl85) is required for growth inhibition by anti-pl85 antibodies but not for the cytotoxicity of an anti-pl85-ricin-a chain immunotoxin. Int J Cancer 1994;59:242–247.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang H, Wang Q, Montone KT, Peavey JE, Drebin JA, Greene MI, Murali R: Shared antigenic epitopes and pathobiological functions of anti-pl85 (her2/neu) monoclonal antibodies. Exp Mol Pathol 1999;67:15–25.CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang H-T, Wang Q, Greene MI, Murali R: New perspectives on anti-her2/neu therapeutics. Drug News Perspect 2000;13:325–329.PubMedGoogle Scholar
  15. 15.
    Drebin JA, Link VC, Weinberg RA, Greene MI: Inhibition of tumor growth by a monoclonal antibody reactive with anonco gene-encoded tumor antigen. Proc Natl Acad Sci USA 1986;83:9129–9133.CrossRefPubMedGoogle Scholar
  16. 16.
    Carter P, Presta L, Goman CM, Ridgway JB, Henner D, Wong WL, et al.: Humanization of an anti-pl85 her2 antibody for human cancer therapy. Proc Natl Acad Sci USA 1992;89:4285–4289.CrossRefPubMedGoogle Scholar
  17. 17.
    Herbst RS, Shin DM: Monoclonal antibodies to target epidermal growth factor receptor-positive tumors: A new paradigm for cancer therapy. Cancer 2002;94:1593–1611.CrossRefPubMedGoogle Scholar
  18. 18.
    Yip YL, Ward RL: Anti-erbb-2 monoclonal antibodies and erbb-2-directed vaccines. Cancer Immunol Immunother 2002;50:569–587.CrossRefPubMedGoogle Scholar
  19. 19.
    Reff ME, Heard C: A review of modifications to recombinant antibodies: Attempt to increase efficacy inoncology applications. Crit Rev Oncol Hematol 2001;40:25–35.PubMedGoogle Scholar
  20. 20.
    Latham PW: The repeutic peptides revisited. Nat Biotechnol 1999;17:755–757.CrossRefPubMedGoogle Scholar
  21. 21.
    Amit AG, Mariuzza RA, Phillips SE, Poljak RJ: Three-dimensional structure of an antigen-antibody complex at 2.8 Å resolution. Science 1986;233:747–753.CrossRefPubMedGoogle Scholar
  22. 22.
    Bruck C, Co MS, Slaoui M, Gaulton GN, Smith T, Fields BN, et al.: Nucleic acid sequence of an internal image-bearing monoclonal anti-idiotype and its comparison to the sequence of the external antigen. Proc Natl Acad Sci USA 1986;83:6578–6582.CrossRefPubMedGoogle Scholar
  23. 23.
    Dougall WC, Peterson NC, Greene MI: Antibody-structure-based design of pharmacological agents. Trends Biotechnol 1994;12:372–379.CrossRefPubMedGoogle Scholar
  24. 24.
    Saragovi HU, Fitzpatrick D, Raktabutr A, Nakanishi H, Kahn M, Greene MI: Design and synthesis of a mimetic from anantibody complementarity-determining region. Science 1991;253:792–795.CrossRefPubMedGoogle Scholar
  25. 25.
    Williams WV, Moss DA, Kieber-Emmons T, Cohen JA, Myers JN, Weiner DB, Greene MI: Development of biologically active peptides based on antibody structure [published erratum appears in Proc Natl Acad Sci USA 1989;86:8044]. Proc Natl Acad Sci USA 1989;86:5537–5541.CrossRefPubMedGoogle Scholar
  26. 26.
    Williams WV, Kieber-Emmons T, VonFeldt J, Greene MI, Weiner DB: Design of bioactive peptides based on antibody hypervariable region structures. Development of conformationally constrained and dimeric peptides with enhanced affinity. J Biol Chem 1991;266:5182–5190.PubMedGoogle Scholar
  27. 27.
    Avrameas A, Ternynck T, Nato F, Buttin G, Avrameas S: Polyreactive anti-DNA monoclonal antibodies and a derived peptide as vectors for the intracytoplasmic and intranuclear translocation of macromolecules. Proc Natl Acad Sci USA 1998;95:5601–5606.CrossRefPubMedGoogle Scholar
  28. 28.
    Brosh N, Dayan M, Fridkin M, Mozes E: A peptide based on the cdr3 of an anti-DNA antibody of experimental sle origin is also a dominant t-cell epitope in (nzbxnzw)f1 lupus-prone mice. Immunol Lett 2000;72:61–68.CrossRefPubMedGoogle Scholar
  29. 29.
    Brosh N, Eilat E, Zinger H, Mozes E: Characterization and role in experimental systemic lupus erythematosus of T-cell lines specific to peptides based on complementarity-determining region-1 and complementarity-determining region-3 of a pathogenic anti-DNA monoclonal antibody. Immunology 2000;99:257–265.CrossRefPubMedGoogle Scholar
  30. 30.
    Chatterjee SK, Tripathi PK, Chakraborty M, Yannelli J, Wang H, Foon KA, et al.: Molecular mimicry of carcinnem bryonic antigen by peptides drived from the structure of an unti-idiotype antibody. Cancer Res 1998;58:1217–1224.PubMedGoogle Scholar
  31. 31.
    Deng Y, Notkins AL: Molecular determinants of polyreactive antibody binding: H cdr3 and cyclic peptides. Clin Exp Immunol 2000;119:69–76.CrossRefPubMedGoogle Scholar
  32. 32.
    Feng Y, Chung D, Garrard L, McEnroe G, Lim D, Scardina J et al.: Peptides derived from the complementarity-determining regions of anti- mac-1 antibodies block intercellular adhesion molecule-1 interaction with mac-1. J Biol Chem 1998;273:5625–5630.CrossRefPubMedGoogle Scholar
  33. 33.
    Hussain R, Courtnay-Luck NS, Siligardi G: Structure-function correlation and biostability of antibody cdr-derived peptides as tumour imaging agents. Biomed Pept Proteins Nucleic Acids 1996;2:67–70.PubMedGoogle Scholar
  34. 34.
    Igarashi K, Asai K, Kaneda M, Umeda M, Inoue K: Specific binding of a synthetic peptide derived from an antibody complementarity determining region to phosphatidylserine. J Biochem (Tokyo) 1995;117:452–457.Google Scholar
  35. 35.
    Jouanne C, Avrameas S, Payelle-Brogard B. A peptide derived from a polyreactive monoclonal anti-DNA natural antibody can modulate lupus development in (nzbxnzw)fl mice. Immunology 1999;96:333–339.CrossRefPubMedGoogle Scholar
  36. 36.
    Laune D, Molina F, Ferrieres G, Mani JC, Cohen P, Simon D, et al.: Systematic exploration of the antigen binding activity of synthetic peptides isolated from the variable regions of immunoglobulins. J Biol Chem 1997;272:30,937–30,944.CrossRefGoogle Scholar
  37. 37.
    Monnet C, Laune D, Laroche-Traineau J, Biard-Piechaczyk M, Briant L, Bes C, et al.: Synthetic peptides derived from the variable regions of an anti-cd4 monoclonal antibody bind to cd4 and inhibit hiv-I promoter activation in virus-infected cells. J Biol Chem 1999;274:3789–3796.CrossRefPubMedGoogle Scholar
  38. 38.
    Sivolapenko GB, Douli V, Pectasides D, Skarlos D, Sirmalis G, Hussain R, et al.: Breast cancer imaging with radiolabelled peptide from complementarity-determining region of antitumour antibody. Lancet 1995;346: 1662–1666.CrossRefPubMedGoogle Scholar
  39. 39.
    Takahashi M, Ueno A, Uda T, Mihara H: Design of novel porphyrin-binding peptides based on antibody cdr. Bioorg Med Chem Lett 1998;8:2023–2026.CrossRefPubMedGoogle Scholar
  40. 40.
    Takahashi M, Ohgitani Y, Ueno A, Mihara H: Design of peptides derived from anti-ige antibody for allergic treatment. Bioorg Med Chem Lett 1999;9:2185–2188.CrossRefPubMedGoogle Scholar
  41. 41.
    Waisman A, Ruiz PJ, Israeli E, Eilat E, Konen-Waisman S, Zinger H, et al.: Modulation of murine systemic lupusery thematosus with peptides based on complementarity determining regions of a pathogenic anti-DNA monoclonal antibody. Proc Natl Acad Sci USA 1997;94:4620–4625.CrossRefPubMedGoogle Scholar
  42. 42.
    Park BW, Zhang HT, Wu C, Berezov A, Zhang X, Dua R, et al.: Rationally designed anti-her2/neu peptide mimetic disables pl 85 her2/neu tyrosine kinases in vitro and in vivo. Nat Biotechnol 2000;18:194–198.CrossRefPubMedGoogle Scholar
  43. 43.
    Berezov A, Zhang HT, Greene MI, Murali R: Disablingerbb receptors with rationally de signed exocyclic mimetics of antibodies: Structure-function analysis. J Med Chem 2001;44:2565–2574.CrossRefPubMedGoogle Scholar
  44. 44.
    Heldin CH: Dimerization of cell surface receptors in signal transduction. Cell 1995;80:213–223.CrossRefPubMedGoogle Scholar
  45. 45.
    Peczuh MW, Hamilton AD: Peptide and protein recognition by designed molecules. Chem Rev 2000;100:2479–2494.CrossRefPubMedGoogle Scholar
  46. 46.
    Zutshi R, Brickner M, Chmielewski J: Inhibiting the assembly of protein-protein interfaces. Curr Opin Chem Biol 1998;2:62–66.CrossRefPubMedGoogle Scholar
  47. 47.
    Schramm HJ, Boetzel J, Buttner J, Fritsche E, Gohring W, Jaeger E, et al.: The inhibition of human immunodeficiency virus proteases by “interface peptides”. Antiviral Res 1996;30:155–170.CrossRefPubMedGoogle Scholar
  48. 48.
    Divita G, Restle T, Goody RS, Chermann JC, Baillon JG: Inhibition of human immunodeficiency virus type 1 reverse transcriptase dimerization using synthetic peptides derived from the connection domain. J Biol Chem 1994;269: 13,080–13,083.Google Scholar
  49. 49.
    Dutia BM, Frame MC, Subak-Sharpe JH, Clark WN, Marsden HS: Specific inhibition of herpesvirus ribonucleotide reductase by synthetic peptides. Nature 1986; 321:439–441.CrossRefPubMedGoogle Scholar
  50. 50.
    Kokai Y, Myers JN, Wada T, Brown VI, LeVea CM, Davis JG, et al.: Synergistic interaction of p185c-neu and the egf receptor leads to transformation of rodent fibroblasts. Cell 1989;58:287–292.CrossRefPubMedGoogle Scholar
  51. 51.
    Alimandi M, Romano A, Curia MC, Muraro R, Fedi P, Aaronson SA, et al.: Cooperative signaling of erbb3 and erbb2 in neoplastic transformation and human mammary carcinomas. Oncogene 1995; 10:1813–1821.PubMedGoogle Scholar
  52. 52.
    Cohen BD, Kiener PA, Green JM, Foy L, Fell HP, Zhang K: The relationship between human epidermal growth-like factor receptor expression and cellular transformation in nih3t3 cells. J Biol Chem 1996; 271:30,897–30,903.Google Scholar
  53. 53.
    Cohen BD, Green JM, Foy L, Fell HP: Her4-mediated biological and biochemical properties in nih 3t3 cells. Evidence for herl-ber4 heterodimers. J Biol Chem 1996;271: 4813–4818.CrossRefPubMedGoogle Scholar
  54. 54.
    Wallasch C, Weiss FU, Niederfellner G, Jallal B, Issing W, Ullrich A: Heregulin-dependent regulation of her2/neu oncogenic signaling by heterodimerization with her3. Embo J 1995;14: 4267–4275.PubMedGoogle Scholar
  55. 55.
    Zhang K, Sun J, Liu N, Wen D, Chang D, Thomason A, Yoshinaga SK: Transformation of nih 3t3 cells by her3 or her4 receptors requires the presence of herl or her2. J Biol Chem 1996;271: 3884–3890.CrossRefPubMedGoogle Scholar
  56. 56.
    Kumagai T, Davis JG, Horie T, O'Rourke DM, Greene MI: The role of distinct p185neu extracellular subdomains for dimerization with the epidermal growth factor (egf) receptor and egf-mediated signaling. Proc Natl Acad Sci USA 2001;98:5526–5531.CrossRefPubMedGoogle Scholar
  57. 57.
    Berezov A, Chen J, Liu Q, Zhang HT, Greene MI, Murali R: Disabling receptor ensembles with rationally designed interface peptidominetics. J Biol Chem 2002; 27:28,330–28,339.Google Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  1. 1.Department of Pathology and Laboratory MedicineUniversity of Pennsylvania School of MedicinePhiladelphia
  2. 2.the Abramson Family Cancer Research InstitutePhiladelphia

Personalised recommendations