Immunologic Research

, Volume 24, Issue 3, pp 303–310 | Cite as

Double light chain producing lymphocytes

An enigma of allellc exclusion


The infrequent double light chain producing lymphocyte (DLCPL) is discussed in the context of allelic exclusion. Principally allelic selection rather than allelic exclusion would suggest a role for the DLCPL in the normal B cell population rather than as an aberrance of B cell malignancy. Found primarily in the periphery, it is uncertain at what stage of B cell ontogeny the DLCPL might reside. Nevertheless, through the possible presentation of two functional surface receptors, the DLCPL could be capable of recognizing both self and nonself epitopes.

Key Words

B lymphocyte Double light chain Allelic exclusion Kappa Lambda 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burnet FM: The Clonal Selection Theory of Acquired Immunity. The University Press, Cambridge, 1959.Google Scholar
  2. 2.
    Talmadge DW: Clonal Selection Theory. Science 1959;129:1643–1648.CrossRefGoogle Scholar
  3. 3.
    Pernis BG, Chiappino G, Kelus AS, Gell PGH: Cellular localization of immuno-globulins with different allotype specificities in rabbit lymphoid tissues. J Exp Med 1965; 122:853–863.PubMedCrossRefGoogle Scholar
  4. 4.
    Cebra JJ, Colberg JE, Dray S: Rabbit lymphoid cells differentiated with respect to alpha- gamma-, and muheavy chain polypeptide chains and to allotypic markers Aa1 and Aa2. J Exp Med 1966;123:547–558.PubMedCrossRefGoogle Scholar
  5. 5.
    Coleclough C, Perry RP, Karjalainen K, Weigen M: Aberrant rearrangements contribute significantly to the allelic exclusion of immunoglobulin gene expresion. Nature 1981;290:372–378.PubMedCrossRefGoogle Scholar
  6. 6.
    Alt FW, Yancopoulos GD, Blackwell TK, et al.: Ordered rearrangements of immunoglobulin heavy chain variable region segments. EMBO J 1984;3:1209–1219.PubMedGoogle Scholar
  7. 7.
    Tiegs SL, Russell DM, Nemazee D. Receptor editing in self-reacting bone marrow B cells. J Exp Med 1993;177:1009–1020.PubMedCrossRefGoogle Scholar
  8. 8.
    Radic MZ, Erikson J, Litwin SL, Weigert M: B lymphocytes may escape tolerance by revising their antigen receptors. J Exp Med 1993; 177:1165–1173.PubMedCrossRefGoogle Scholar
  9. 9.
    Pernis B, Chiappino G, Kelus AS, Gell PGH: Cellular localization of immunoglobulins with different allotypic specificities in rabbit lymphoid tissues. J Exp Med 1965; 122:853–876.PubMedCrossRefGoogle Scholar
  10. 10.
    Oudin J: The Regulation of Hemoglobin and immunoglobulin synthesis. J Cell Physiol 1966;67:96.CrossRefGoogle Scholar
  11. 11.
    Allen SL: Genomic Exclusion in Tetrahymena: Genetic Basis. J Protozool 1963;10:413–420.PubMedGoogle Scholar
  12. 12.
    Bennett JC, Owen RD: The Regulation of Hemoglobin and immunoglobulin synthesis. J Cell Physiol 1966;67:207–215.PubMedCrossRefGoogle Scholar
  13. 13.
    Weiler E: Differential activity of allelic γ-globulin genes in antibody-producing cells. Proc Natl Acad Sci USA 1965;54:1765–1772.PubMedCrossRefGoogle Scholar
  14. 14.
    Attardi G, Cohn M, Horibata K, Lennox ES: On the analysis of antibody synthesis at the cellular level. Bacteriol Rev 1959;23:213–223.PubMedGoogle Scholar
  15. 15.
    Mäkelä O, Nossal GJV: Study of antibody-producing capacity of single cells by bacterial adherance and immobilization. J Immunol 1961;87:457–463.PubMedGoogle Scholar
  16. 16.
    Hiramoto RN, Hamlyn M: Detection of two antibodies in single plasma cells by the impaired fluoresence technique. J Immunol 1965;95:214–224.PubMedGoogle Scholar
  17. 17.
    Green I, Vassalli P, Nussenzweig V, Benacerraf B: Specificity of the antibodies produced by single cells following immunization with antigens bearing two types of antigenic determinants. J Exp Med 1967; 125:511–525.PubMedCrossRefGoogle Scholar
  18. 18.
    McBride RA, Schierman LW: Antibody-forming cells: population patterns after simultaneous immunization with different iso antigens. Science 1966;154:655–657.PubMedCrossRefGoogle Scholar
  19. 19.
    Cohn M: Immunology: what are the rules of the game? Cell Immunol 1972;5:1–20.PubMedCrossRefGoogle Scholar
  20. 20.
    Bretscher P, Cohn M: A theory of self-nonself discrimination. Science 1970;169:1042–1049.PubMedCrossRefGoogle Scholar
  21. 21.
    Heinrich G, Traunecker A, Tonegawa S: Somatic mutation creates diversity in the major group of mouse immunoglobulin k light chains. J Exp Med 1984;159:417–435.PubMedCrossRefGoogle Scholar
  22. 22.
    Alt FW, Yancopoulos GD, Blackwell TK, et al.: Ordered rearrangement of immunoglobulin heavy chain variable region segments. EMBO J. 1984;3:1209–1219.PubMedGoogle Scholar
  23. 23.
    Wabl M, Steinberg C: A theory of allelic and isotypic exclusion for immunoglobulin genes. Proc Natl Acad Sci USA 1982;79:6976–6978.PubMedCrossRefGoogle Scholar
  24. 24.
    Prak EL, Weigert M: Light chain replacement: a new model for antibody gene rearrangement. J Exp Med 1995;182:541–548.PubMedCrossRefGoogle Scholar
  25. 25.
    Langman RE, Cohn M: How might the κ/λ ratio expressed by antigen-unselected B: cells be explained? Res Immunol 1992;143:804–811.PubMedCrossRefGoogle Scholar
  26. 26.
    Bogen B, Weiss S: A rearranged λ2 light gene chain retards but does not exclude κ and λ1 expression. Eur J Immunol 1991;21:2391–2395.PubMedCrossRefGoogle Scholar
  27. 27.
    Hood L, Grant JA, Sox H: in Devopmental aspects of antibody formation and struct-ure. Sterzl J, Riha I (eds.) Academic Press, New York, 1970, vol. 1, p. 283.Google Scholar
  28. 28.
    Balomenos D, Balderas RS, Mulvany KP, Kaye J, Kono DH, Theofilopoulos AN: Incomplete T cell receptor Vβ allelic exclusion and dual Vβ-expressing cells. J Immunol 1995;155:3308–3312.PubMedGoogle Scholar
  29. 29.
    Padovan E, Casorati G, Dellabona P, Meyer S, Brockhaus M, Lanzevecchia A: Expression of two T cell receptor α chains: dual receptor T cells. Science 1993; 262:422–424.PubMedCrossRefGoogle Scholar
  30. 30.
    Davodeau F, Peyrat M-A, Houde I, et al.: Surface expression of two distinct functional antigen receptors on human γδT cells. Science 1993;260:1800–1802.PubMedCrossRefGoogle Scholar
  31. 31.
    Löffert D, Ehlich A, Müller W, Rajewsky K: Surrogate light chain expression is re-quired to establish immunoglobulin heavy chain allelic exclusion during early B cell development. Immunity 1996;4:133–144.PubMedCrossRefGoogle Scholar
  32. 32.
    ten Boekel E, Melchers F, Rolink AG: Precursor B cells showing H chain allelic in-clusion display allelic exclusion at the level of pre-B cell receptor surface expression. Immunity 1998;8:199–207.PubMedCrossRefGoogle Scholar
  33. 33.
    Kenny JJ, Rezanka LJ, Lustig A, et al.: Autoreactive B cells escape clonal deletion by expressing multiple antigen receptors. 2000;164:4111–4119.Google Scholar
  34. 34.
    Hardy RR, Dangl JL, Hayakawa K, Jager G, Herzenberg LA, Herzenberg LA: Frequent lambda light chain gene rearrangement and expression in a Ly-1 B lymphoma with a productive kappa chain allele. Proc Natl Acad Sci USA 1986;83:1438–1442.PubMedCrossRefGoogle Scholar
  35. 35.
    Gollahon KA, Hagman J, Brinster RL, Storb U: Ig lambda-producing B cells do not show feedback inhibition of gene rearrangement. J Immunol 1988;141:2771–2780.PubMedGoogle Scholar
  36. 36.
    Kitamura D, Rajewsky K: Targeted disruption of m chain membrane exon causes loss of heavy chain allelic exclusion. Nature 1996:356:154–156.CrossRefGoogle Scholar
  37. 37.
    Bouvet JP, Buffe D, Oriol R, Liacopoulos P: Two myeloma globulins IgG1-κ and IgG1-λ, from a single patient (Im). II. Their common cellular originas revealed by immunofluorescence studies. Immunology 1974;27:1095–1101.PubMedGoogle Scholar
  38. 38.
    Dalal FR, Winsten S: Double light-chain disease: a case report. Clin Chem 1979;25:190–192.PubMedGoogle Scholar
  39. 39.
    Gibaud A, Gibaud H: Another case of double light-chain disease. Clin Chem 1979;25:644.PubMedGoogle Scholar
  40. 40.
    Choi YJ, Wong MS: Double light-chain production by leukemic cells of common clonal origin: a case report with review of pertinent literature. Am J Hematol 1981;11:93–98.PubMedCrossRefGoogle Scholar
  41. 41.
    Schipper H, Orr KB, Bow EJ: Coexistence of double gammopathy flgM kand IgM λ) in the serum of a single individual with chronic lymphocytic leukemia. Acta Haematol 1983;69:23–31.PubMedCrossRefGoogle Scholar
  42. 42.
    Brito-Babapulle V, Melo JV, Foroni L, et al.: Neoplastic κ and λ cells in a B-PLL with chromosome translocations of both light chain gene regions. Int J Cancer 1984;34:769–773.PubMedCrossRefGoogle Scholar
  43. 43.
    Sun LH, Croce CM, Showe LC: Cloning and sequencing of a rearranged V lambda gene from a Burkitt’s lymphoma cell line expressing kappa light chains. Nucleic Acids Res 1985;13:4921–4934.PubMedCrossRefGoogle Scholar
  44. 44.
    Del Senno L, Gandini D, Gambari R, Lanza F, Tomasi P, Castoldi G: Monoclonal origin of B cells producing κ, λ and κ: λ immunoglobulin light chains in a patient with chronic lymphocytic leukemia. Leuk Res 1987;11:1093–1098.PubMedCrossRefGoogle Scholar
  45. 45.
    Peltomaki P, Bianchi NO, Knuutila S, et al.: Immunoglobulin kappa and lambda light chain dual genotype rearrangement in a patient with kappa-secreting B-CLL. Eur J Cancer Clin Oncol 1988;24:1233–1238.PubMedCrossRefGoogle Scholar
  46. 46.
    Matsuo Y, Nakamura S, Ariyasu T, et al.: Foursubclones with distinct immunoglobulin light chain phenotypes. (κ+λ+, κ++ and κλ) from acute leukemia. Leukemia. 1996;4:700–706.Google Scholar
  47. 47.
    Nakano M, Kuriyama Y, Kawanishi Y, et al.: Localized diffuse large-cell lymphoma possibly coated with anti-tumor autoantibody: kappa lambda-dualpositive. Int J Hematol 1997;65:299–304.PubMedCrossRefGoogle Scholar
  48. 48.
    Kawada H, Fukuda R, Yoshida M, et al.: A novel variant of B-lymphoid leukemia expressing kappa/lambda light chain. Acta Haematol 1998;100:54–56.PubMedCrossRefGoogle Scholar
  49. 49.
    Diaw L, Siwarski D, Coleman A, et al.: Restricted immunoglobulin variable region (Ig V) gene expression accompanies secondary rearrangements of light chain Ig V genes in mouse plasmacytomas. J Exp Med 1999;190:1405–1416.PubMedCrossRefGoogle Scholar
  50. 50.
    Diaw L, Siwarski D, DuBois W, Jones G, Huppi K: Double producters of kappa and lambda define a subset of B cells in mouse plasmacytomas. Mol Immunol 2000;37:775–781.PubMedCrossRefGoogle Scholar
  51. 51.
    Pauza ME, Rehmann JA, LeBien TW: Unusual patterns of immunoglobulin gene rearrangement and expression during human B cell ontogeny: human B cells can simultaneously express cell surface κ and λ light chains. J Exp Med 1993;178:139–149.PubMedCrossRefGoogle Scholar
  52. 52.
    Giachino C, Padovan E, Lanzavecchia A. κ+λ+ dual receptor B cells are present in the human peripheral repertoire. J Exp Med 1995;181:1245–1250.PubMedCrossRefGoogle Scholar
  53. 53.
    Rolink A, Grawunder U, Haasner D, Strasser A, Melchers F: Immature surface Ig+ B cells can continue to rearrange kappa and lambda L chain gene loci. J. Exp. Med. 1993;178:1263–1270.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2001

Authors and Affiliations

  1. 1.Laboratory of Genetics National Cancer InstituteNIHBethesda

Personalised recommendations