Immunologic Research

, Volume 23, Issue 2–3, pp 147–156 | Cite as

Regulation of B lymphocyte development and activation by Bruton's tyrosine kinase

  • Wasif N. Khan


The generation and maintenance of B lymphocytes is controlled by biochemical signals tramsitted by the B cell antigen receptor (BCR) complex. These signals are transduced by multiple cytoplasmic protein tyrosine kinases (PTKs) including Lyn, Syk, and Bruton's tyrosine kinase (BTK). Upon BCR engagement, these PTKs activate downstream effectors, including transcription factors that modulate gene expression. In turn activation of down stream effectors is critical for B cell survival, cell cycle progression, and antibody production. Our studies focus on the role of BTK in these biological responses. We have discovered that BTK is required for activation of the BCR-responsive transcription factor, NF-κB. Furthermore, BTK-dependent activation of NF-κB isessential for reprogramming the expression of genes that control B cell survival and proliferation. The biochemical mechanisms by which BTK regulates signaling components that activate NF-κB, and the identification of BTK-responsive genes are under investigation. Elucidation of these regulatory mechanisms is expected to reveal new therapeutic targets for B cell pathologies involving defects in BTK, including X-linked agammaglobulinemia (XLA).

Key Words

B Lymphocyte B Cell Receptor Bruton's Tyrosine Kinase X-Linked Immunodeficiency (Xid) X-Linked Agammaglobulinemia (XLA) Transcription Factors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reth M: The B-cell antigen receptor complex and co-receptors. Immunol Today 1995;16:310–313.PubMedCrossRefGoogle Scholar
  2. 2.
    Reth M, Wienands J: Initiation and processing of signals from the B cell antigen receptor. Annu Rev Immunol 1997;15:453–479.PubMedCrossRefGoogle Scholar
  3. 3.
    Rajewsky K: Clonal selection and learning in the antibody system. Nature 1996;381:751–758.PubMedCrossRefGoogle Scholar
  4. 4.
    Kurosaki T: Genetic analysis of B cell antigen receptor signaling. Annu Rev Immunol 1999;17:555–592.PubMedCrossRefGoogle Scholar
  5. 5.
    Weiss A, Littman DR: Signal transduction by lymphocyte antigen receptors. Cell 1994;76: 263–274.PubMedCrossRefGoogle Scholar
  6. 6.
    Campbell KS: Signal transduction from the B cell antigen-receptor. Curr Opin. Immunol. 1999;11: 256–264.PubMedCrossRefGoogle Scholar
  7. 7.
    Cambier JC, Pleiman CM, Clark MR: Signal transduction by the B cell antigen receptor and its coreceptors. Annu Rev Immunol 1994;12:457–486.PubMedCrossRefGoogle Scholar
  8. 8.
    Kurosaki T, Tsukada S: BLNK: connecting Syk and Btk to calcium signals. Immunity 2000;12:1–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Fruman DA, Satterthwaite AB, Witte ON: Xid-like phenotypes: a B cell signalosome takes shape. Immunity 2000;13:1–3.PubMedCrossRefGoogle Scholar
  10. 10.
    Okada T, Maeda A, Iwamatsu A, Gotoh K, Kurosaki T: BCAP: the tyrosine kinase substrate that connects B cell receptor to phosphoinositide 3-kinase activation. Immunity 2000;13:817–827.PubMedCrossRefGoogle Scholar
  11. 11.
    Bijsterbosch MK, Klaus GG: Crosslinking of surface immunoglobulin and Fc receptors on OB lymphocytes inhibits stimulation of inositol phospholipid breakdown via the antigen receptors. J Exp Med 1985;162:1825–1836.PubMedCrossRefGoogle Scholar
  12. 12.
    Coggeshall KM, Cambier JC: B cell activation. VIII. Membrane immunoglobulins transduce signals via activation of phosphatidylinositol hydrolysis. J Immunol 1984;133:3382–3386.PubMedGoogle Scholar
  13. 13.
    Choi MS, Brines RD, Holman MJ, Klaus GG: Induction of NF-AT in normal B lymphocytes by antiimmunoglobulin or CD40 ligand in conjunction with IL-4. Immunity 1994;1:179–187.PubMedCrossRefGoogle Scholar
  14. 14.
    Francis DA, Sen R, Rice N, Rothstein TL: Receptor-specific induction of NF-kappaB components in primary B cells. Int. Immunol. 1998;10:285–293.PubMedCrossRefGoogle Scholar
  15. 15.
    Corcoran LM, Karvelas M, Nossal GJ, Ye ZS, Jacks T, Baltimore D: Oct-2, although not required for early B-cell development, is critical for later B-cell maturation and for postnatal survival. Genes Dev. 1993;7:570–582.PubMedCrossRefGoogle Scholar
  16. 16.
    Glimcher LH, Singh H: Transcription factors in lymphocyte development T and B cells get together. Cell 1999;96:13–23.PubMedCrossRefGoogle Scholar
  17. 17.
    Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I, et al.: Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 1993;72:279–290.PubMedCrossRefGoogle Scholar
  18. 18.
    Vetrie D, Vorchovsky I, Sideras P, Hollard J, Davies A, Flinter F, et al.: The gene involved in X-linked agammaglobulinemia is a member of the src family of proteintyrosine kinases. Nature 1993;361:226–233.PubMedCrossRefGoogle Scholar
  19. 19.
    Conley ME, Cooper MD: Genetic basis of abnormal B cell development. Curr Opin Immunol 1998; 10:399–406.PubMedCrossRefGoogle Scholar
  20. 20.
    Sideras P, Smith CI: Molecular and cellular aspects of X-linked a gammaglobulinemia. Adv Immunol 1995;59:135–223.PubMedGoogle Scholar
  21. 21.
    Campana D, Farrant J, Iramdar N, Webster AD, Janossy G: Phenotypic features and proliferative activity of B cell progenitors in X-linked agammaglobulinemia. J. Immunol. 1990;145:1675–1680.PubMedGoogle Scholar
  22. 22.
    Pearl ER, Vogler LB, Okos AJ, Crist WM, Lawton ARd, Cooper MD: B lymphocyte precursors in human bone marrow: an analysis of normal individuals and patients with antibody-deficiency states. J Immunol 1978;120:1169–1175.PubMedGoogle Scholar
  23. 23.
    Amsbaugh DF, Hansen CT, Prescot B, Stashak PW, Barthold DR, Parker PJ: Genetic control of the antibody response to type III pneumonococcal polysaccharides in mice. I. Evidence that an X-linked gene plays a decisive role in determining responsiveness. J. Exp. Med. 1972;136:931–936.PubMedCrossRefGoogle Scholar
  24. 24.
    Scher I: The CBA/N mouse strain: an experimental model illustrating the influence of the X-chromosome on immunity. Adv Immunol 1982;33:1–71.PubMedCrossRefGoogle Scholar
  25. 25.
    Rawlings DJ, Saffran DC, Tsukada S, Largaespada DA, Grimaldi JC, Cohen L, et al.: Mutation of unique region of Bruton's tyrosine kinase in immunodeficient XID mice. Science 1993;261:358–361.PubMedCrossRefGoogle Scholar
  26. 26.
    Thomas JD, Sideras P, Smith CI, Vorechovsky I, Chapman V, Paul WE: Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science 1993;261:355–358.PubMedCrossRefGoogle Scholar
  27. 27.
    Khan WN, Alt FW, Gerstein RM, et al.: Defective B cell development and function in Btk-deficient mice. Immunity 1995;3:283–299.PubMedCrossRefGoogle Scholar
  28. 28.
    Loder F, Mutschler B, Ray RJ, et al.: B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J Exp Med 1999;190:75–89.PubMedCrossRefGoogle Scholar
  29. 29.
    Fagarasan S, Watanabe N, Honjo T: Generation, expansion, migration and activation of mouse B1 cells. Immunol Rev 2000;176:205–215.PubMedCrossRefGoogle Scholar
  30. 30.
    Fagarasan S, Honjo T: T-Independent immune response: new aspects of B cell biology. Science 2000;290:89–92.PubMedCrossRefGoogle Scholar
  31. 31.
    Oka Y, Rolink AG, Andersson J, et al.: Profound reduction of mature B cell numbers, reactivities and serum Ig levels in mice which simultaneously carry the XID and CD40 deficiency genes. Int Immunol 1996;8:1675–1685.PubMedCrossRefGoogle Scholar
  32. 32.
    Khan WN, Nilsson A, Mizoguchi E, et al.: Impaired B cell maturation in mice lacking Bruton's tyrosine kinase (Btk) and CD40. Int Immunol 1997;9:395–405.PubMedCrossRefGoogle Scholar
  33. 33.
    Vos Q, Lees A, Wu ZQ, Snapper CM, Mond JJ: B-cell activation by T-cell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms. Immunol Rev 2000;176:154–170.PubMedCrossRefGoogle Scholar
  34. 34.
    Fluckiger AC, Li Z, Kato RM, et al.: Btk/Tec kinases regulate sustained increases in intracellular Ca2+ following B-cell receptor activation. EMBO J 1998;17:1973–1985.PubMedCrossRefGoogle Scholar
  35. 35.
    Yamada H, June CH, Finkelman F, et al.: Persistent calcium elevation correlates with the induction of surface immunoglobulin-mediated B cell DNA synthesis. J Exp Med 1993;177:1613–1621.PubMedCrossRefGoogle Scholar
  36. 36.
    Anderson JS, Teutsch M, Dong Z, Wortis HH: An essential role for Bruton's tyrosine kinase in the regulation of B-cell apoptosis. Proc Natl Acad Sci USA 1996;93: 10,966–10,971.Google Scholar
  37. 37.
    Forssell J, Nilsson A, Sideras P: Bruton's tyrosine-kinase-deficient murine B lymphocytes fail to enter S phase when stimulated with anti-immunoglobulin plus interleukin-4. Scand. J. Immunol. 1999;49:155–161.PubMedCrossRefGoogle Scholar
  38. 38.
    Solvason N, Wu WW, Kabra N, et al.: Transgene expression of bcl-xL permits anti-immunoglobulin (Ig)-induced proliferation in xid B cells. J Exp Med 1998;187:1081–1091.PubMedCrossRefGoogle Scholar
  39. 39.
    Pappu R, Cheng AM, Li B, et al.: Requirement for B cell linker protein (BLNK) in B cell development. Science 1999;286:1949–1954.PubMedCrossRefGoogle Scholar
  40. 40.
    Wang D, Feng J, Wen R, et al.: Phospholipase C gamma 2 is essential in the functions of B cell and several Fc receptors. Immunity 2000;13:25–35.PubMedCrossRefGoogle Scholar
  41. 41.
    Zhang R, Alt FW, Davidson L, Orkin SH, Swat W: Defective signalling through the T- and B-cell antigen receptors in lymphoid cells lacking the vav proto-oncogene. Nature 1995;374:470–473.PubMedCrossRefGoogle Scholar
  42. 42.
    Jumaa H, Wollscheid B, Mitterer M, Wienands J, Reth M, Nielsen PJ: Abnormal development and function of B lymphocytes in mice deficient for the signaling adaptor protein SLP-65. Immunity 1999;11:547–554.PubMedCrossRefGoogle Scholar
  43. 43.
    Leitges M, Schmedt C, Guinamard R, et al.: Immunodeficiency in protein kinase c beta-deficient mice. Science 1996;273:788–791.PubMedCrossRefGoogle Scholar
  44. 44.
    Fruman DA, Snapper SB, Yballe CM, et al.: Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85 alpha. Science 1999; 283:393–397.PubMedCrossRefGoogle Scholar
  45. 45.
    Scharenberg AM, Kinet JP: Ptdlns-3,4,5-P3: a regulatory nexus between tyrosine kinases and sustained calcium signals. Cell 1998;94:5–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Dolmetsch RE, Xu K, Lewis RS: Calcium oscillations increase the efficiency and specificity of gene expression. Nature 1998;392:933–936.PubMedCrossRefGoogle Scholar
  47. 47.
    Bendall HH, Sikes ML, Ballard DW, Oltz EM: An intact NF-kappa B signaling pathway is required for maintenance of mature B cell subsets. Mol Immunol 1999;36:187–195.PubMedCrossRefGoogle Scholar
  48. 48.
    Bendall HH, Scherer DC, Edson CR, Ballard DW, Oltz EM: Transcription factor NF-kappaB regulates inducible Oct-2 gene expression in precursor B lymphocytes. J. Biol. Chem. 1997;272: 826–828.CrossRefGoogle Scholar
  49. 49.
    Baldwin AS Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu. Rev. Immunol. 1996;14:649–683.PubMedCrossRefGoogle Scholar
  50. 50.
    Karin M, Ben-Neriah Y: Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 2000;18: 621–663.PubMedCrossRefGoogle Scholar
  51. 51.
    Sha WC, Liou HC, Tuomanen EI, Baltimore D: Targeted disruption of the p50 subunit of NF-kappa B leads to multifocal defects in immune responses. Cell 1995;80:321–330.PubMedCrossRefGoogle Scholar
  52. 52.
    Kontgen F, Grumont RJ, Strasser A, et al.: Mice lacking the c-rel proto-oncogene exhibit defects in lymphocyte proliferation, humoral immunity, and interleukin-2 expression. Genes Dev. 1995;9:1965–1977.PubMedCrossRefGoogle Scholar
  53. 53.
    Grumont RJ, Rourke IJ, O'Reilly LA, et al.: B lymphocytes differentially use the Rel and nuclear factor kappaB1 (NF-kappaB1) transcription factors to regulate cell cycle progression and apoptosis in quiescent and mitogen-activated cells. J. Exp. Med. 1998;187:663–674.PubMedCrossRefGoogle Scholar
  54. 54.
    Takata M, Homma Y, Kurosaki T: Requirement of phospholipase C-gamma 2 activation in surface immunoglobulin M-induced B cell apoptosis. J Exp Med 1995;182:907–914.PubMedCrossRefGoogle Scholar
  55. 55.
    Takata M, Kurosaki T: A role for Bruton's tyrosine kinase in B cell antigen receptor-mediated activation of phospholipase C-gamma 2. J Exp Med 1996;184:31–40.PubMedCrossRefGoogle Scholar
  56. 56.
    Petro JB, Rahman SM, Ballard DW, Khan WN: Bruton's tyrosine kinase is required for activation of 1kappaB kinase and nuclear factor kappaB in response to B cell receptor engagement. J Exp Med 2000; 191:1745–1754.PubMedCrossRefGoogle Scholar
  57. 57.
    Venkataraman L, Burakoff SJ, Sen R: FK 506 inhibits antigen receptor-mediated induction of c-rel in B and T lymphoid cells. J. Exp. Med. 1995;181:1091–1099.PubMedCrossRefGoogle Scholar
  58. 58.
    Petro JB, Khan WN: Phospholipase C-gamma 2 Couples Bruton's Tyrosine Kinase to the NF-kappa B Signaling Pathway in B Lymphocytes. J Biol Chem 2001; 276: 1715–1719.PubMedCrossRefGoogle Scholar
  59. 59.
    Craxton A, Jiang A, Kurosaki T, Clark EA: Syk and Bruton's tyrosine kinase are required for B cell antigen receptor-mediated activation of the kinase Akt. J Biol Chem 1999;274: 30,644–30,650.CrossRefGoogle Scholar
  60. 60.
    Kaisho T, Takeda K, Tsujimura T, et al.: IkappaB Kinase alpha Is Essential for Mature B Cell Development and Function. J Exp Med 2001;193:417–426.PubMedCrossRefGoogle Scholar
  61. 61.
    Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI: Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 1997; 386:855–858.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2001

Authors and Affiliations

  • Wasif N. Khan
    • 1
  1. 1.Department of Microbiology and ImmunologyVanderbilt University School of MedicineNashville

Personalised recommendations