Immunologic Research

, Volume 21, Issue 2–3, pp 167–176 | Cite as

Participation of innate and acquired immunity in atherosclerosis

  • Linda K. Curtiss
  • Nobuhiko Kubo
  • Natalie K. Schiller
  • William A. Boisvert


Coronary artery disease, the major manifestation of atherosclerosis, is the leading cause of death in the Western world. However, the pathogenesis of atherosclerosis is still poorly understood. Controversy exists regarding the participation of innate immunity involving macrophages and natural killer (NK) cells vs antigen-specific acquired immunity involving lymphocytes. Macrophages predominate in atherosclerotic lesions. NK cells, although smaller in number, are present as well. Furthermore, T lymphocytes that participate in acquired immunity are frequently observed in lesions and can modulate lesion progression. By using mouse models of hyperlipidemia, our laboratory is addressing in vivo the participation of both innate inflammatory responses and acquired immune responses in atherosclerosis.

Key Words

Atherosclerosis Hyperlipidemia Macrophages Natural killer cells Lymphocytes Bone marrow transplantation LDLR-deficient mice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Breslow JL: Mouse models of atherosclerosis. Science 1996;272: 685–688.PubMedCrossRefGoogle Scholar
  2. 2.
    Plump A: Atherosclerosis and the mouse: a decade of experience. Ann Med 1997;29:193–198.PubMedGoogle Scholar
  3. 3.
    Masuda J, Ross R: Atherogenesis during low level hypercholesterolemia in the nonhuman primate. I. Fatty streak formation. Arteriosclerosis 1990;10: 164–177.PubMedGoogle Scholar
  4. 4.
    Masuda J, Ross R: Atherogenesis during low level hypercholesterolemia in the nonhuman primate. II. Fatty streak conversion to fibrous plaque. Arteriosclerosis 1990;10:178–187.PubMedGoogle Scholar
  5. 5.
    Ross R: Cell biology of atherosclerosis. Annu Rev Physiol 1995; 57:791–804.PubMedCrossRefGoogle Scholar
  6. 6.
    Xu Q, Oberhuber G, Gruschwitz M, Wick G: Immunology of atherosclerosis: cellular composition and MHCII antigen expression in aortic intima, fatty streaks, and atherosclerotic plaques in young and aged human species. Clin Immunol Immunopathol 1990;56:344–359.PubMedCrossRefGoogle Scholar
  7. 7.
    Hansson GK, Jonasson L, Lojsthed B, Stemme S, Kocher O, Gabbiani G: Localization of T-lymphocytes and macrophages in fibrous and complicated human atherosclerotic plaques. Atherosclerosis 1998;72:135–141.CrossRefGoogle Scholar
  8. 8.
    Hansson GK, Jonasson L, Seifert PS, Stemme S: Immune mechanisms in atherosclerosis. Arteriosclerosis 1989;9:567–578.PubMedGoogle Scholar
  9. 9.
    Stemme S, Holm J, Hansson GK: T-lymphocytes in human atherosclerotic plaques are memory cells expressing CD45RO and integrin VLA1. Arterioscl Thromb 1992; 12:206–211.PubMedGoogle Scholar
  10. 10.
    Shimokama T, Haraoka S, Watanake T: Immunohistochemical and ultrastructural demonstration of lymphocyte-macrophage interaction in human aortic intima. Modern Pathol 1991;4:101–107.Google Scholar
  11. 11.
    Poston RN, Hussain IE: The immunohistochemical heterogeneity of atheroma macrophages: comparison with lymphoid tissues suggests that recently blood-derived macrophages can be distinguished from longer-resident cells. J Histochem Cytochem 1993;41:1503–1512.PubMedGoogle Scholar
  12. 12.
    van der Wal AC, Das PK, Tigges AJ, Becker AE: Macrophage differentiation in atherosclerosis: an in situ immunohistochemical analysis in humans. Am J Pathol 1992;141:161–168.PubMedGoogle Scholar
  13. 13.
    Smith JD, Trogan E, Ginsberg M, Grigaux C, Tian, J, Miyata M: Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc Natl Acad Sci USA 1995;92:8264–8268.PubMedCrossRefGoogle Scholar
  14. 14.
    Qiao J-H, Tripathi J, Mishra NK, Cai Y, Tripathi S, Wang X-P, Imes S, Fishbein MC, Clinton SK, Libby P, Lusis AJ, Rajavashisth TB: Role of macrophage colony-stimulating factor in atherosclerosis: studies of osteopetrotic mice. Am J Pathol 1997;150:1687–1699.PubMedGoogle Scholar
  15. 15.
    Rajavashisth T, Qiao J-H, Tripathi S, Tripathi J, Mishra N, Hua M, Wang X-P, Loussararian A, Clinton S, Libby P, Lusis A: Heterozygous osteopetrotic (op) mutation reduces atherosclerosis in LDL receptor-deficient mice. J Clin Invest 1998;101:2701–2710.Google Scholar
  16. 16.
    Berliner JA, Navab M, Fogelman AM, Frank JS, Demer LL, Edwards PA, Watson AD, Lusis AJ: Atherosclerosis: basic mechanisms oxidation, inflammation, and genetics. Circulation 1995;91:2488–2496.PubMedGoogle Scholar
  17. 17.
    Reaven PD: Mechanisms of atherosclerosis: role of LDL oxidation. Adv Exp Med Biol 1994;366: 113–128.PubMedGoogle Scholar
  18. 18.
    Boisvert WA, Spangenberg J, Curtiss LK: Role of leukocyte-specific LDL receptors on plasma lipoprotein cholesterol and atherosclerosis in mice. Arterioscl Thromb Vasc Biol 1997;17:340–347.PubMedGoogle Scholar
  19. 19.
    Zhou X, Stemme S, Hansson GK: Evidence for a local immune response in atherosclerosis: CD4+ T cells infiltrate lesions of apolipoprotein-E-deficient mice. Am J Pathol 1996;149:359–366.PubMedGoogle Scholar
  20. 20.
    Gupta S, Pablo AM, Jiang X-C, Wang N, Tall AR, Schindler C: IFN-γ potentiates atherosclerosis in apo E knock-out mice. J Clin Invest 1997;99:2752–2761.PubMedGoogle Scholar
  21. 21.
    Zhou X, Paulsson G, Stemme S, Hansson G: Hypercholesterolemia is associated with a T helper (Th) 1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout mice. J Clin Invest 1998;101:1717–1725.PubMedGoogle Scholar
  22. 22.
    Daugherty A, Puré E, Delfel-Butteiger D, Chen S, Leferovich J, Roselaar SE, Rader DJ: The effects of total lymphocyte deficiency on the extent of atherosclerosis in apolipoprotein E-/- mice. J Clin Invest 1997;100:1575–1580.PubMedGoogle Scholar
  23. 23.
    Dansky HM, Charlton SA, Harper MM, Smith JD: T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci USA 1997;94: 4642–4646.PubMedCrossRefGoogle Scholar
  24. 24.
    Emeson EE, Shen-L, Bell CG, Qureshi A: Inhibition of atherosclerosis in CD 4T-cell-ablated and nude (nulnu) C57BL/6 hyperlipidemic mice. Am J Pathol 1996;149: 675–685.PubMedGoogle Scholar
  25. 25.
    Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK: Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 1986;6: 131–138.PubMedGoogle Scholar
  26. 26.
    Kosierkiewicz TA, Factor SM, Dickson DW: Immunocytochemical studies of atherosclerotic lesions of cerebral berry aneurysms. J Neuropathol Exp Neurol 1994;53:399–406.PubMedGoogle Scholar
  27. 27.
    Seko Y, Sato O, Takagi A, Tada Y, Matsuo H, Yagita H, Okumura K, Yazaki Y: Restricted usage of T-cell receptor Vα-Vβ genes in infiltrating cells in aortic tissue of patients with Takayasu's arteritis. Circulation 1996;93:1788–1790.PubMedGoogle Scholar
  28. 28.
    Clerc G, Roux PM: Lymphocyte subsets in severe atherosclerosis before revascularization. Ann Intern Med 1997;126:1004,1005.PubMedGoogle Scholar
  29. 29.
    Fyfe AI, Qiao J-H, Lusis AJ: Immune-deficient mice develop typical atherosclerotic fatty streaks when fedanatherogenic diet. J Clin Invest 1994;94:2516–2520.PubMedGoogle Scholar
  30. 30.
    Roselaar SE, Kakkanathu PX, Daugherty A: Lymphocyte populations in atherosclerotic lesions of apo E-/- and LDL receptor-/-mice: decreasing density with disease progression. Arterioscl Thromb Vasc Biol 1996;16: 1013–1018.PubMedGoogle Scholar
  31. 31.
    Lanier LL, Corliss B, Phillips JH: Arousal and inhibition of human NK cells. Immunol Rev 1997;155: 145–154.PubMedCrossRefGoogle Scholar
  32. 32.
    Höglund P, Sundbäck J, Olsson-Alheim MY, Johansson M, Salcedo M, Öhlén C, Ljunggren H-G, Sentman CL, Kärre K: Host MHC class I gene control of NK-cell specificity in the mouse. Immunol Rev 1997;155:11–28.PubMedCrossRefGoogle Scholar
  33. 33.
    Liao F, Andalibi A, deBeer FC, Fogelman AM, Lusis AJ: Genetic control of inflammatory gene induction and NfκB-like transcription factor activation in response to an atherogenic diet in mice. J Clin Invest 1993;91: 2572–2579.PubMedGoogle Scholar
  34. 34.
    Salcedo M, Ljunggren H-G: Natural killer cells in MHC class I deficient mice; in Moretta L (ed): Molecular Basis of NK Cell Recognition and Function Chemical Immunology. Basel, Karger, 1996, vol 64, pp 44–58.Google Scholar
  35. 35.
    Brown MG, Scalzo AA, Matsumoto K, Yokoyama WM: The natural killer gene complex: a genetic basis for understanding natural killer cell function and innate immunity. Immunol Rev 1997;155:53–65.PubMedCrossRefGoogle Scholar
  36. 36.
    Nishina PM, Wang J, Toyofuku W, Kuypers FA, Ishida BY, Paigen B: Atherosclerosis and plasma and liver lipids in nine inbred strains of mice. Lipids 1993;28:599–605.PubMedCrossRefGoogle Scholar
  37. 37.
    Uyemura K, Demer LL, Castle SC, Jullien D, Berliner JA, Gately MK, Warrier RR, Pham N, Fogelman AM, Modlin RL: Cross-regulatory roles of interle ukin (IL)-12 and IL-10 in atherosclerosis. J Clin Invest 1996;97:2130–2138.PubMedCrossRefGoogle Scholar
  38. 38.
    Paigen B, Holmes PA, Novak EK, Swank RT: Analysis of atherosclerosis susceptibility in mice with genetic defects in platelet function. Arteriosclerosis 1990;10: 648–652.PubMedGoogle Scholar
  39. 39.
    Grodstein F, Stampfer MJ, Manson JE, Colditz GA, Willett WC, Rosner B, Speizer FE, Hennekens CH: Postmenopausal estrogen and progestin use and the risk of cardiovascular disease. NEJM 1996; 335:453–461.PubMedCrossRefGoogle Scholar
  40. 40.
    Milisauskas VK, Cudkowicz G, Nakamura I: Role of suppressor cells in the decline of natural killer cell activity in estrogen-treated mice. Cancer Res 1983;43:5240–5243.PubMedGoogle Scholar
  41. 41.
    Christianson SW, Greiner DL, Schweitzer IB Gott B, Beamer GL, Schweitzer PA, Hesselton RM, Shultz LD: Role of natural killer cells on engraftment of human lymphoid cells and on metastasis of human T-lymphoblastoid leukemia cells in C57BL/6J-scid mice and in C57BL/6J-scid bg mice. Cell Immunol 1996;171: 186–199.PubMedGoogle Scholar
  42. 42.
    Liu C-C, Walsh CM, Young JD-E: Perforin: structure and function. Immunol. Today 1995;16:194–201.PubMedCrossRefGoogle Scholar
  43. 43.
    Liu C-C, Persechini PM, Young JD-E: Perforin and lymphocyte-mediated cytolysis. Immunol Rev 1995;146:145–175.PubMedCrossRefGoogle Scholar
  44. 44.
    Walsh CM, Matloubian M, Liu C-C, Ueda R, Kurahara CG, Christensen JL, Huang MTF, Young JD-E, Ahmed R, Clark WR: Immune function in mice lacking the perforin gene. Proc Natl Acad Sci USA 1994;91:10,854–10,858.CrossRefGoogle Scholar
  45. 45.
    Kägi D, Ledermann B, Bürki K, Zinkernagel RM, Hengartner H: Molecular mechanisms of lymphocyte-mediated cytotoxicity and their role in immunological protection and pathogenesis in vivo. Annu Rev Immunol 1996;14:207–232.PubMedCrossRefGoogle Scholar
  46. 46.
    Guidotti LG, Ishikawa T, Hobbs MV, Matzke B, Schreiber R, Chisari FV: Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity 1996; 4:25–36.PubMedCrossRefGoogle Scholar
  47. 47.
    Nagle DL, Karim MA, Woolf EA, Holmgren L, Bork P, Misumi DJ, McGrai SH, Dussault BJ Jr, Perou CM, Boissy RE, Duyk GM, Spritz RA, Moore KJ: Identification and mutation analysis of the complete gene for C hediak-Higashi syndrome. Nat Genet 1996;14: 307–311.PubMedCrossRefGoogle Scholar
  48. 48.
    Tang Y, Hügin AW, Giese NA, Gabriele L, Chattopadhyay SK, Fredrickson TN, Kägi D, Hartley JW, Morse HC III: Control of immunodeficiency and lymphoproliferation in mouse AIDS: stu-Google Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Linda K. Curtiss
    • 1
    • 2
  • Nobuhiko Kubo
    • 1
  • Natalie K. Schiller
    • 1
  • William A. Boisvert
    • 1
  1. 1.Department of ImmunologyThe Scripps Research InstituteLa Jolla
  2. 2.Department of Vascular BiologyThe Scripps Research InstituteLa Jolla

Personalised recommendations