International Journal of Pancreatology

, Volume 29, Issue 1, pp 25–35 | Cite as

Mouse models of metastatic pancreatic adenocarcinoma

  • Keping Xie
  • Bailiang Wang
  • Qian Shi
  • James L. Abbruzzese
  • Qinghua Xiong
  • Xiangdong Le
Article

Summary

Pancreatic adenocarcinoma is a deadly disease. Its etiology is unknown, and metastatic disease kills the majority of patients who have it. Effective prevention is clearly the ultimate goal for eradicating this disease provided that the effects of environmental and genetic elements on pancreatic cancer development are fully understood. Currently, it appears that the control of pancreatic cancer metastasis is of immediate urgency. Fulfillment of this difficult task relies on knowledge of the cellular and molecular biology of metastasis. The use of relevant animal models will help define each aspect of this complicated process.

Key Words

Metastasis angiogenesis nitric oxide animal model pancreas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Evans DB, Abbruzzese JL, Rich TR. Cancer of the pancreas, in Cancer Principles and Practice of Oncology. Fifth Edition. DeVita T, Hellman S, Rosenberg SA, eds. New York: Lippincot-Raven, 1997; pp. 1054–1087.Google Scholar
  2. 2.
    Gold EB, Goldin SB. Epidemiology of and risk factors for pancreatic cancer. Surg Oncol Clin N Am 1998; 7: 67–91.PubMedGoogle Scholar
  3. 3.
    Ettinghausen SE, Schwartzentruber DJ, Sindelar WF. Evolving strategies for the treatment of adenocarcinoma of the pancreas. J Clin Gastroenterol 1995; 21: 48–60.PubMedCrossRefGoogle Scholar
  4. 4.
    Hall Pa, Lemoine NR. Models of pancreatic cancer. Cancer Surv 1993; 16: 135–155.PubMedGoogle Scholar
  5. 5.
    Konishi Y, Tsutsumi M, Longnecker DS. Mechanistic analysis and chemoprevention of pancreatic carcinogenesis. Pancreas 1998; 17(4): 334–340.PubMedCrossRefGoogle Scholar
  6. 6.
    Watanapa P, Williamson RC. Experimental pancreatic hyperplasia and neoplasia: effects of dietary and surgical manipulation. Br J Cancer 1993; 67(5): 877–884.PubMedGoogle Scholar
  7. 7.
    Rao MS. Animal models of exocrine pancreatic carcinogenesis. Cancer Metastasis Rev 1987; 6(4): 665–676.PubMedCrossRefGoogle Scholar
  8. 8.
    Longnecker D.S. Carcinogenesis of the Pancreas. Arch Patho Lab Med 1983; 107: 54–58.Google Scholar
  9. 9.
    Shi Q, Xie K. Experimental animal models for pancreatic cancer. Intl J Oncol 2000; 17: 217–225.Google Scholar
  10. 10.
    Fidler IJ. Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Res 1990; 50(19): 6130–6138.PubMedGoogle Scholar
  11. 11.
    Sugarbaker EV. Cancer metastasis: a product of tumor-host interactions. Curr Probl Cancer 1979; 3: 1–59.PubMedCrossRefGoogle Scholar
  12. 12.
    Weiss L. Principles of Metastasis. Academic Press, Orlando, 1985.Google Scholar
  13. 13.
    Korc M. Role of growth factors in pancreatic cancer. Surg Oncol Clin N Am 1998; 7(1): 25–41.PubMedGoogle Scholar
  14. 14.
    Terhune PG, Heffess CS, Longnecker DS. Only wild-type c-Ki-ras codons 12, 13, and 61 in human pancreatic acinar cell carcinomas. Mol Carcinog 1994; 10(2): 110–114.PubMedCrossRefGoogle Scholar
  15. 15.
    Cerny WL, Mangold KA, Scarpelli DG. Activation of K-ras in transplantable pancreatic ductal adenocarcinomas of Syrian golden hamsters. Carcinogenesis 1990; 11(11): 2075–2079.PubMedCrossRefGoogle Scholar
  16. 16.
    Fujii H, Egami H, Chaney W, Pour P, Pelling J. Pancreatic ductal adenocarcinomas induced in Syrian hamsters by N-nintrosobis(2-oxopropyl)amine contain a c-Ki-ras oncogene with a point-mutated codon 12. Mol Carcinog 1990; 3(5): 296–301.PubMedCrossRefGoogle Scholar
  17. 17.
    Okita S, Tsutsumi M, Onji M, Konishi Y. p53 mutation without allelic loss and absence of mdm-2 amplification in a transplantable hamster pancreatic ductal adenocarcinoma and derived cell lines but not primary ductal:adenocarcinomas in hamsters. Mol Carcinog 1995; 13(4): 266–271.PubMedCrossRefGoogle Scholar
  18. 18.
    Kern SE. Advances from genetic clues in pancreatic cancer. Curr Opin Oncol 1998; 10: 74–80.PubMedCrossRefGoogle Scholar
  19. 19.
    Folkman J. Tumor angiogenesis and tissue factor. Nat Med 1996; 2(2): 167–168.CrossRefGoogle Scholar
  20. 20.
    Leek RD, Harris AL, Lewis CE. Cytokine networks in solid human tumors: regulation of angiogenesis. J. Leukoc. Biol. 1994; 56: 423–435.PubMedGoogle Scholar
  21. 21.
    Brown LF, Detmar K, Claffey JA, et al. Vascular permeability factor/vascular endothelial growth factor: A multifunctional angiogenic cytokine. In Regulation of Angiogenesis (Goldberg ID, Rosen EM, eds.). Switzerland: Birkhauser Verlag Basel 1997, 233–270.Google Scholar
  22. 22.
    Itakura J, Ishiwata T, Friess H, et al. Enhanced expression of vascular endothelial growth factor in human pancreatic cancer correlates with local disease progression. Clin Cancer Res 1997; 3: 1309–1316.PubMedGoogle Scholar
  23. 23.
    Yamanaka Y, Friess H, Buchler M, et al. Overexpression of acidic and basic fibroblast growth factors in human pancreatic cancer correlates with advanced tumor stage. Cancer Res 1993; 53(2): 5289–5296.PubMedGoogle Scholar
  24. 24.
    Shi Q, Abbruzzese J, Huang S, Fidler IJ, Xie K. Constitutive and inducible interleukin-8 expression by hypoxia and acidosis renders human pancreatic cancer cells more tumorigenic and metastatic. Clin Cancer Res 1999; 5: 3711–3721.PubMedGoogle Scholar
  25. 25.
    Le X, Shi Q, Wang B, et al. Molecular regulation of constitutive expression of interleukin-8 in human pancreatic adenocarcinoma. J Interferon Cytokine Res 2000; 20: 1532–1540.CrossRefGoogle Scholar
  26. 26.
    Xie K. Interleukin-8 and Human Cancer Biology. Cytokine and Growth Factor Review, in press, 2001.Google Scholar
  27. 27.
    Liotta LA, Stetler-Stevenson WG: Tumor invasion and metastasis: an imbalance of positive and negative regulation. Cancer Res 1991; (suppl)51: 5054s–5059s.Google Scholar
  28. 28.
    Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 1989; 49: 6449–6465.PubMedGoogle Scholar
  29. 29.
    Boucher Y, Baxter LT, Jain RK. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res 1990; 50: 4478–4484.PubMedGoogle Scholar
  30. 30.
    Gasic GJ: Role of plasma, platelets and endothelial cells in tumor metastasis. Cancer Metastasis Rev 1984; 3: 99–105.PubMedCrossRefGoogle Scholar
  31. 31.
    Fidler IJ, Bucana C: Mechanism of tumor cell resistance to lysis by syngeneic lymphocytes. Cancer Res 1977; 37: 3945–3956.PubMedGoogle Scholar
  32. 32.
    Fidler IJ. Metastasis: Quantitative analysis of distribution and fate of tumor emboli labeled with 125I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst 1970; 46: 773–783.Google Scholar
  33. 33.
    Chambers AF, Matrisian LM. Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 1997; 89: 1260–1270.PubMedCrossRefGoogle Scholar
  34. 34.
    Zetter BR. The cellular basis of site-specific tumor metastasis. N Engl J Med 1990; 322(9): 605–612.PubMedCrossRefGoogle Scholar
  35. 35.
    Nicolson GL: Cancer metastasis: tumor cell and host organ properties important in metastasis to specific secondary sites. Biochim Bhiophys Acta 1988; 948: 175–208.Google Scholar
  36. 36.
    Xie K, Wang Y, Huang S, et al. Nitric Oxide-mediated apoptosis in murine melanma is associated with down-regulation of Bcl-2. Oncogene 1997; 15(6): 771–779.PubMedCrossRefGoogle Scholar
  37. 37.
    Radinsky R. Modulation of tumor cell gene expression and phenotype by the organ-specific metastatic environment. Cancer Metastasis Rev 1995; 14: 323–328.PubMedCrossRefGoogle Scholar
  38. 38.
    Fidler IJ, Gersten DM, Hart IR: The biology of cancer invasion and metastasis. Adv Cancer Res 1978; 28: 149–250.PubMedCrossRefGoogle Scholar
  39. 39.
    Fidler IJ, Gersten DM, Hart IR. The biology of cancer invasion and metastasis. Adv Cancer Res 1978; 28: 149–250.PubMedCrossRefGoogle Scholar
  40. 40.
    Fidler IJ, Kripke ML. Metastasis results from preexisting variant cells within a malignant tumor. Science 1977; 197(4306): 893–895.PubMedCrossRefGoogle Scholar
  41. 41.
    Vezeridis MP, Tzanakakis GN, Meltner PA, Doremus CM, Tibbetts LM, Calabresi P. In vitro selection of a highly metastatic cell line from a human pancreatic carcinoma in the nude mouse. Cancer 1992; 69(8): 2060–2063.PubMedCrossRefGoogle Scholar
  42. 42.
    Fidler IJ. Selection of successive tumor lines for metastasis. Nat New Biol 1973; 242(118): 148–149.PubMedGoogle Scholar
  43. 43.
    Kripke ML, Gruys E, Fidler IJ. Metastatic heterogeneity of cells from an ultraviolet light-induced murine fibrosarcoma of recent origin. Cancer Res 1978; 38: 2962–2967.PubMedGoogle Scholar
  44. 44.
    Welch DR. Technical considerations for studying cancer metastasis in vivo. Clin Exp Metastasis 1997; 15(3): 272–306.PubMedCrossRefGoogle Scholar
  45. 45.
    Giovanella BC, Yim SO, Stehlin JS, Williams LJ Jr. Development of invasive tumors in the “nude” mouse after injection of cultured human melanoma cells. J Natl Cancer Inst 1972; 48(5): 1531–1533.PubMedGoogle Scholar
  46. 46.
    Shimosato Y, Kameya T, Nagai K, et al. Transplantation of human tumors in nude mice. J Natl Cancer Inst 1976; 56(6): 1251–1260.PubMedGoogle Scholar
  47. 47.
    Sharkey FE, Fogh J. Considerations in the use of nude mice for cancer research. Cancer Metastasis Rev 1984; 3(4): 341–360.PubMedCrossRefGoogle Scholar
  48. 48.
    Garafolo A, Chirivi RG, Scanziani E, Mayo JG, Vecchi A, Giavazzi R. Comparative study on the metastatic behavior of human tumors in nude, beige/nude/xid and severe combined immunodeficient mice. Invasion Metastasis 1993; 13(2): 82–91.Google Scholar
  49. 49.
    Corbett TH, Roberts BJ, Leopold WR, et al. Induction and chemotherapeutic response of two transplantable ductal adenocarcinomas of the pancreas in C57BL/6 mice. Cancer Res 1984; 44: 717–726.PubMedGoogle Scholar
  50. 50.
    Wang B, Xiong Q, Shi Q, et al. Intact Nitric Oxide Synthase II Gene is Required for Interferon-β-mediated Suppression of Growth and Metastasis of Pancreatic Adenocarcinoma. Cancer Res (Advances in Brief) 2001; 61(1): 71–75.PubMedGoogle Scholar
  51. 51.
    Wang B, Shi Q, Abbruzzese JL, Xiong Q, Le X, Xie K. A novel, clinically relevant animal model of metastatic pancreatic adenocarcinoma biology and therapy. Intl J Pancreatol 2001; 29(1): 37–46.Google Scholar
  52. 52.
    Siedlar M, Stachura J, Szczepanik A, et al. Characterization of human pancreatic adenocarcinoma cell line with high metastatic potential in SCID mice. Invasion Metastasis 1995; 15(1–2): 60–69.PubMedGoogle Scholar
  53. 53.
    Tan MH, Chu TM. Characterization of the tumorigenic and metastatic properties of a human pancreatic tumor cell line (AsPC-1) implanted orthotopically into nude mice. Tumor Biol 1985; 6(1): 89–98.Google Scholar
  54. 54.
    Fidler IJ. Orthotopic implantation of human colon carcinomas into nude mice provides a valuable model for the biology and therapy of metastasis. Cancer Metastatis Rev 1991; 10(3): 229–243.CrossRefGoogle Scholar
  55. 55.
    Outzen HC, Custer RP. Growth of human normal and neoplastic mammary tissues in the cleared mammary fat pad of the nude mouse. J Natl Cancer Inst 1975; 55(6): 1461–1466.PubMedGoogle Scholar
  56. 56.
    Kameya T, Shimosato Y, Tumuraya M, Ohsawa N, Nomura T. Human gastric choriocarcinoma serially transplanted in nude mice. J Natl Cancer Inst 1976; 56(2): 325–332.PubMedGoogle Scholar
  57. 57.
    Sharkey FE, Fogh J. Considerations in the use of nude mice for cancer research. Cancer Metastasis Rev 1984; 3(4): 341–360.PubMedCrossRefGoogle Scholar
  58. 58.
    Stanbridge EJ, Perkins FT. Tumourigenicity testing in immunosuppressed mice: advantages and disadvantages. Dev Biol Stand 1976; 13–15,37: 211–217.Google Scholar
  59. 59.
    Fidler IJ. Modulation of the organ microenvironment for treatment of cancer metastasis. J Natl Cancer Inst 1995; 87(21): 1588–1592.PubMedCrossRefGoogle Scholar
  60. 60.
    Slack NH, Bross ID. The influence of site of metastasis on tumour growth and response to chemotherapy. Br J Cancer 1975; 32(1): 78–86.PubMedGoogle Scholar
  61. 61.
    Xie K, Bielenberg D, Huang S, et al. Abrogation of tumorigenicity and metastasis of murine and human tumor cells by transfection with the murine IFN-beta gene: possible role of nitric oxide. Clin Cancer Res 1997; 3(12 Pt 1): 2283–2294.PubMedGoogle Scholar
  62. 62.
    Xie K, Huang S, Dong Z, Gutman M, Fidler IJ. Direct correlation between expression of endogenous inducible nitric oxide synthase and regression of M5076 reticulum cell sarcoma hepatic metastases in mice treated with liposomes containing lipopeptide CGP31362. Cancer Res 1995; 55(14): 3123–3131.PubMedGoogle Scholar
  63. 63.
    Vezeridis MP, Meitner PA, Tibbetts LM, Doremus CM, Tzanakakis G, Calabresi P. Heterogeneity of potential for hematogenous metastasis in a human pancreatic carcinoma. J Surg Res 1990; 48(1): 51–55.PubMedCrossRefGoogle Scholar
  64. 64.
    Lafreniere R, Rosenberg SA. A novel approach to the generation and identification of experimental hepatic metastases in a murine model. J Natl Cancer Inst 1986; 76(2): 309–322.PubMedGoogle Scholar
  65. 65.
    Koike A, Nakazato H, Moore GE. The fate of Ehrlich cells injected into the portal system. Cancer 1963; 16: 716–720.PubMedCrossRefGoogle Scholar
  66. 66.
    Kopper L, Van Hanh T, Lapis K. Experimental model for liver metastasis formation using Lewis lung tumor. J Cancer Res Clin Oncol 1982; 103(1): 31–38.PubMedCrossRefGoogle Scholar
  67. 67.
    Marincola F, Taylor-Edwards C, Drucker B, Holder WD Jr. Orthotopic and heterotopic xenotransplantation of human pancreatic cancer in nude mice. Curr Surg 1987; 44(4): 29,429–29,437.Google Scholar
  68. 68.
    Vezeridis MP, Doremus CM, Tibbetts LM, Tzanakakis G, Jackson BT. Invasion and metastasis following orthotopic transplantation of human pancreatic cancer in the nude mouse. J Surg Oncol 1989; 40(4): 261–265.PubMedCrossRefGoogle Scholar
  69. 69.
    Furukawa T, Kubota T, Watanabe M, Kitajima M, Hoffman RM. A novel “patient-like” treatment model of human pancreatic cancer constructed using orthotopic transplantation of histologically intact human tumor tissue in nude mice. Cancer Res 1993; 53(13): 3070–3072.PubMedGoogle Scholar
  70. 70.
    Fu X, Guadagni F, Hoffman RA. A metastatic nude-mouse model of human pancreatic cancer constructed orthotopically with histologically intact patient specimens. Proc Natl Acad Sci USA 1992; 89(12): 5645–5649.PubMedCrossRefGoogle Scholar
  71. 71.
    Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J 1992; 6: 3051–3064.PubMedGoogle Scholar
  72. 72.
    Ambs S, Hussain SP, Harris CC. Interactive effects of nitric oxide and the p53 tumor suppressor gene in carcinogenesis and tumor progression. FASEB J 1997; 11: 443–448.PubMedGoogle Scholar
  73. 73.
    Wink DA, Vodovotz Y, Laval J, Laval F, Dewhirst MW, Mitchell JB. The multifaceted roles of nitric oxide in cancer. Carcinogenesis 1998; 19(5): 711–721.PubMedCrossRefGoogle Scholar
  74. 74.
    Xie K, Fidler IJ. Therapy of cancer metastasis by activation of the inducible nitric oxide synthase. Cancer Metastasis Rev 1998; 17(1): 55–75.PubMedCrossRefGoogle Scholar
  75. 75.
    Shi Q, Huang S, Jiang W, Kutach LS, Ananthaswamy HN, Xie K. Direct correlation between nitric oxide synthase II inducibility and metastatic abilty of UV-2337 murine fibrosarcoma cells carrying mutant p53. Cancer Res 1999; 59: 2072–2075.PubMedGoogle Scholar
  76. 76.
    Shi Q, Wang B, Xiong Q, Le X, Khan N, Xie K. Influence of nitric oxide synthase II gene disruption on tumor growth and metastasis. Cancer Res (Advance in Brief) 2000; 60: 2645–2650.Google Scholar
  77. 77.
    Wang B, Xiong Q, Shi Q, Tan D, Le X, Xie K. Genetic disruption of host nitric oxide synthase II gene impairs melanoma-induced angiogenesis and suppresses pleural effusion. Intl J Cancer 2001; 91(5): 607–611.CrossRefGoogle Scholar
  78. 78.
    Tzanakakis GN, Agarwal KC, Vezeridis MP. Inhibition of hepatic metastasis from a human pancreatic adenocarcinoma (RWP-2) in the nude mouse by prostacyclin, forskolin, and ketoconazole. Cancer 1990; 65(3): 446–451.PubMedCrossRefGoogle Scholar
  79. 79.
    Tzanakakis GN, Agarwal KC, Veronikis DK, Vezeridis MP. Effects of antiplatelet agents alone or in combinations on platelet aggregation and on liver metastases from a human pancreatic adenocarcinoma in the nude mouse. J Surg Oncol 1991; 48(1): 45–50.PubMedCrossRefGoogle Scholar
  80. 80.
    Block A, Chen SH, Kosai K, Finegold M, Woo SL. Adenoviral-mediated herpes simplex virus thymidine kinase gene transfer: regression of hepatic metastasis of pancreatic tumors. Pancreas 1997; 15(1): 25–34.PubMedCrossRefGoogle Scholar
  81. 81.
    Hwang RF, Gordon EM, Anderson WF, Parekh D. Gene therapy for primary and metastatic pancreatic cancer with intraperitoneal retroviral vector bearing the wild-type p53 gene. Surgery 1998; 124(2): 143–150.PubMedGoogle Scholar
  82. 82.
    Saito K, Ishikura H, Kishimoto T, et al. Interleukin-6 produced by pancreatic carcinoma cells enhances humoral immune responses against tumor cells: a possible event in tumor regression. Int J Cancer 1998; 75(2): 284–289.PubMedCrossRefGoogle Scholar
  83. 83.
    Shi Q, Abbruzzese JL, Huang S, Ozawa S, Fidler IJ, Xie K. Constitutive and Inducible Interleukin-8 Expression by Hypoxia and Acidosis Renders Human Pancreatic Cancer Cells More Tumorigenic and Metastatic. 2nd International Congress on Gastroenterological Carcinogenesis. March, 1999. Ulm, Germany.Google Scholar
  84. 84.
    Shi Q, Le X, Abbruzzese JL, et al. Cooperation between transcription factor AP-1 and NF-κB in the induction of interleukin-8 in human pancreatic adenocarcinoma cells by hypoxia. J Interferon Cytokine Res 1999; 19: 1363–1371.PubMedCrossRefGoogle Scholar
  85. 85.
    Shi Q, Le X, Wang B, Xiong Q, Abbruzzese JL, Xie K. Regulation of interleukin-8 expression by cellular pH in human pancreatic adenocarcinoma cells. J Interferon Cytokine Res 2000; 20: 1544–1548.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2001

Authors and Affiliations

  • Keping Xie
    • 1
    • 2
  • Bailiang Wang
    • 1
  • Qian Shi
    • 1
  • James L. Abbruzzese
    • 1
  • Qinghua Xiong
    • 1
  • Xiangdong Le
    • 1
  1. 1.Department of Gastrointestinal Medical OncologyThe University of Texas M. D. Anderson Cancer CenterHouston
  2. 2.Department of Cancer BiologyThe University of Texas M. D. Anderson Cancer CenterHouston

Personalised recommendations