Age determination of brain contusions

Original Article


In 104 individuals who had sustained traumatic brain injury, the course of traumatically induced morphological changes was investigated immunohistochemically during the first 30 weeks after the trauma. Regarding the inflammatory cell reaction in human cortical contusions, CD15-labeled granulocytes were detectable within 10 minutes following brain injury, whereas significantly increased numbers of nuclear leukocytes occurred after a postinfliction interval of at least 1.1 days (leukocyte common antigen), 2 days (CD3), or 3.7 days (UCHL-1), respectively. A positive nuclear staining for the proliferation marker MIB-1 by cerebral macrophages could be observed as early as 3 days after the injury and regularly in cases with a survival between 7 and 11 days. Injury-induced glial staining reactions could be demonstrated, at the earliest, after a postinfliction interval of 3 hours for α1-antichymotrypsin, 22 hours for vimentin, 1 day for glial fibrillary acidic protein, and 7 days for tenascin. Regarding the vascular response to brain injury, a significantly increased immunoreactivity could be detected in cortical contusions with a wound age of at least 3 hours for factor VIII, 1.6 days for tenascin, and 6.8 days for thrombomodulin, whereas the immunostaining for laminin and type IV collagen was regularly whereas the immunostaining for laminin and type IV collagen was regularly positive even in the vascular endothelium of ininjured brain tissue.

Key Words

Forensic neuropathology neurotraumatology brain injury wound age immunohistochemistry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Spatz H. Von der Morphologie der Gehirnkontusion (besonders der Rindenprellungsherde). Münch Med Mschr 1951;93:1.Google Scholar
  2. 2.
    Andersson PB, Mathiesen T, Shetye J, Biberfeld P. Intracerebral inflammatory response to lipopolysaccharide in CNS parenchyma differs from that in other body tissues. Neuroscience 1992;48:169–186.PubMedCrossRefGoogle Scholar
  3. 3.
    Holmin S, Mathiesen T, Shetye J, Biberfield P. Intracerebral inflammatory response to experimental brain contusion. Acta Neurochir Wien 1995;132:110–119.PubMedCrossRefGoogle Scholar
  4. 4.
    Persson L. Cellular reaction to small cerebral stab wound in the rat frontal lobe. Virch Arch B Cell Pathol Mol Pathol 1976;22:21–37.Google Scholar
  5. 5.
    Rio-Hortega P. Microglia. In: Penfield W, ed. Cytology and Cellular Pathology of the Nervous System. New York: Paul P Hocker, 1932, pp. 481–584.Google Scholar
  6. 6.
    Hozumi I, Chiu FC, Norton WT. Biochemical and immunocytochemical changes in glial fibrillary acidic protein after stab wounds. Brain Res 1990;524:64–71.PubMedCrossRefGoogle Scholar
  7. 7.
    Hausmann R, Kaiser A, Lang C, Bohnert M, Betz P. A quantitative immunohistochemical study on the time-dependent course of acute inflammatory cellular response to human brain injury. Int J Legal Med 1999;112:227–232.PubMedCrossRefGoogle Scholar
  8. 8.
    Hausmann R, Betz P. The course of MIB-1 expression by cerebral macrophages following human brain injury. Legal Med 2002;4:79–83.PubMedCrossRefGoogle Scholar
  9. 9.
    Hausmann R, Betz P. Course of glial immunoreactivity for vimentin, tenascin and α1-antichymotrypsin after traumatic injury to human brain. Int J Legal Med 2001;114:338–342.PubMedCrossRefGoogle Scholar
  10. 10.
    Hausmann R, Rieß R, Fieguth A, Betz P. Immunohistochemical investigations on the course of astroglial GFAP expression following human brain injury. Int J Legal Med 2000;113:70–75.PubMedCrossRefGoogle Scholar
  11. 11.
    Hausmann R, Betz P. The time course of the vascular response to human brain injury—an immunohistochemical study. Int J Legal Med 2000;113:288–292.PubMedCrossRefGoogle Scholar
  12. 12.
    Hausmann R. Timing of cortical contusions in human brain injury. Morphological parameters for a forensic wound-age estimation. In: Tsokos M, ed. Forensic Pathology Reviews, Vol. 1. Totowa, NJ: Humana Press, 2004, pp. 53–75.Google Scholar
  13. 13.
    Cervós-Navarro L, Lafuente JV. Traumatic brain injuries: structural changes. J Neurol Sci 1991;103:3–14.CrossRefGoogle Scholar
  14. 14.
    Carmichael AE. Microglia: an experimental study in rabbits after intracerebral injection of blood. J Neurol Psychopathol 1929;9:209–216.Google Scholar
  15. 15.
    Hammes EM. Reaction of the meninges to blood. Arch Neurol Psychiat 1944;52:505–514.Google Scholar
  16. 16.
    Oehmichen M, Raff G. Timing of cortical contusions. Correlation between histomorphological alterations and post-traumatic interval. Z Rechtsmed 1980;84:79–94.PubMedCrossRefGoogle Scholar
  17. 17.
    Oehmichen M, Eisenmenger W, Raff G, Berghaus G. Brain macrophages in human cortical contusions as an indicator of survival period. Forensic Sci Int 1986;30:281–301.PubMedCrossRefGoogle Scholar
  18. 18.
    Macklin CC, Macklin MT. A study of brain repair in the rat by use of trypan blue, with special reference to the vital staining of macrophages. Arch Neurol Psychiat (Chic) 1920;3:353–393.Google Scholar
  19. 19.
    Masuda Y. Histological and histochemical study of cortical lesion of brain with special reference to the alteration in compressed area. Jpn J Legal Med 1969;23:139–169.Google Scholar
  20. 20.
    Nevin NC. Neuropathological changes in white matter following head injury. J Neuropath Exp Neurol 1967;26:77–84.PubMedCrossRefGoogle Scholar
  21. 21.
    Baggenstoss AH, Kernohan JW, Drapiewski JF. The healing process in wounds of the brain. Am J Clin Pathol 1943;13:333–348.Google Scholar
  22. 22.
    Eisenmenger W, Zur histologischen und histochemischen Altersbestimmung gedeckter Hirnrindenverletzungen. Med. Habil. 1977, München.Google Scholar
  23. 23.
    Krauland W. Über die Zeitbestimmung von Schädelhirnverletzungen. Beitr Gerichtl Med 1973;38:226–251.Google Scholar
  24. 24.
    Lindenberg R, Freytag E. Morphology of cortical contusions. Arch Pathol 1957;63:23–42.Google Scholar
  25. 25.
    Strassmann G. Formation of hemosiderin after traumatic and spontaneous cerebral hemorrhages. Arch Pathol (Chic) 1949;47:205–210.Google Scholar
  26. 26.
    Meyermann R, Engel S, Wehner HD, Schlüsener HJ. Microglial reactions in severe closed head injury. In: Oehmichen M, König HG, eds. Neurotraumatology: Biomechanic Aspects, Cytologic and Molecular Mechanisms. Lübeck: Schmidt-Römhild, 1997, pp. 261–278.Google Scholar
  27. 27.
    Eisenmenger W, Nehrlich A, Glück G. Die Bedeutung des Kollagens bei der Wundaltersbestimmung. Z Rechtsmed 1988;100:79–100.PubMedCrossRefGoogle Scholar
  28. 28.
    Li R, Fujitani N, Jing-Tao J, Kimura H. Immunohistochemical indicators of early brain injury: an experimental study using the fluid-percussion model in cats. Am J Forensic Med Pathol 1998; 19:129–136.PubMedCrossRefGoogle Scholar
  29. 29.
    Herrera DG, Cuello AC. Glial fibrillary acidic protein immunoreactivity following cortical devascularizating lesion. Neuroscience 1992;49:781–791.PubMedCrossRefGoogle Scholar
  30. 30.
    Bignami A, Dahl D. The astroglial response to stabbing. Immunofluorescense studies with antibodies to astrocyte-specific protein (GFA) in mammalian and submammalian vertebrates. Neuropathol Appl Neurobiol 1976;2:99–110.Google Scholar
  31. 31.
    Oblinger MM, Singh LD. Reactive astrocytes in neonate brain upregulates intermediate filament gene expression in response to axonal injury. Int J Dev Neurosci 1993;11:149–156.PubMedCrossRefGoogle Scholar
  32. 32.
    Takamiya Y, Kohsaka S, Toya S, Otani M, Tsukada Y. Immunohistochemical studies on the proliferation of reactive astrocytes and the expression of cytoskeletal proteins following brain injury in rats. Dev Brain Res 1988;466:201–210.CrossRefGoogle Scholar
  33. 33.
    Cheng HW, Jiang T, Brown SA, Pasinetti GM, Finch CE, McNeill TH. Response of striatal astrocytes to neuronal deafferentation: an immunocytochemical and ultrastructural study. Neuroscience 1994;62:425–439.PubMedCrossRefGoogle Scholar
  34. 34.
    Kinoshita A, Yamada K, Hayakawa T. Wound healing following stab injury on rat cerebral cortex. Neurol Res 1991;13: 184–188.PubMedGoogle Scholar
  35. 35.
    Calvo JL, Carbonell AL, Boya J. Co-expression of glial fibrillary acidic protein and vimentin in reactive astrocytes following brain injury in rats. Brain Res 1991;566:333–336.PubMedCrossRefGoogle Scholar
  36. 36.
    Schiffer D, Giordana MT, Cavalla P, Vigliani MC, Attanasio A. Immunohistochemistry of glial reaction after injury in the rat: double staining and markers of cell proliferation. Int J Devl Neurosci 1993;11:269–280.CrossRefGoogle Scholar
  37. 37.
    Yamamoto C, Kawana E. Immunohistochemical detection of laminin and vimentin in the thalamic VB nucleus after ablation of somatosensory cortex in the rat. Okajimas Folia Anat Jpn 1990;67:21–29.PubMedGoogle Scholar
  38. 38.
    Aufderheide E, Eklom P. Tenascin during gut development: appearance in the mesenchyme, shift in molecular forms and dependence on epithelial-mesenchymal interactions. J Cell Biol 1988;107:2341–2349.PubMedCrossRefGoogle Scholar
  39. 39.
    Chiquet-Erismann R, Mackie EJ, Pearson CA, Sakakura T. Tenascin: an extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell 1986;98:131, 139.CrossRefGoogle Scholar
  40. 40.
    Maier A, Mayne R. Distribution of connective tissue proteins in chick muscle spindles as revealed by mononuclear antibodies: a unique distribution of brachionectin/tenascin. Am J Anat 1987;180:226–236.PubMedCrossRefGoogle Scholar
  41. 41.
    Brodkey JA, Laywell ED, O'Brian TF, Faissner A, Stefansson K, Dorries HU. Focal brain injury and upregulation of a developmentally regulated extracellular matrix protein. J Neurosurg 1995;82:106–112.PubMedCrossRefGoogle Scholar
  42. 42.
    Abraham CR, Selkoe DJ, Potter H. Immunochemical identification of the serine protease inhibitor α1-antichymotrypsin in the brain amyloid deposits of Alzheimer's disease. Cell 1988;52:487–501.PubMedCrossRefGoogle Scholar
  43. 43.
    Abraham CR, Kanemaru K, Mucke L. Expression of cathepsin G-like and α1-antichymotrypsin-like proteins in reactive astrocytes. Brain Res 1993;621:222–232.PubMedCrossRefGoogle Scholar
  44. 44.
    Shoji M, Hirai S, Yamaguchi H, Harigaya Y, Ishiguro K, Matsubara E. A comparative study of beta-protein and alpha1-antichymotrypsin immunostaining in the Alzheimer brain. Am J Pathol 1991;138:247–257.PubMedGoogle Scholar
  45. 45.
    Pasternack JM, Abraham CR, Van Dyke BJ, Potter H, Younkin SG. Astrocytes in Alzheimer's disease gray matter express alpha1-antichymotrypsin mRNA. Am J Pathol 1989;135:827–833.PubMedGoogle Scholar
  46. 46.
    Abraham CR, Shirahama T, Potter H. Alpha1-antichymotrypsin is associated soley with amyloid deposits containing the beta-protein. Amyloid and cell localization of alpha1-antichymotrypsin. Neurobiol Aging 1990;11:123–129.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  1. 1.Institute of Legal MedicineUniversity of Erlangen-NürnbergErlangenGermany

Personalised recommendations