Advertisement

Forensic Science, Medicine, and Pathology

, Volume 2, Issue 2, pp 103–108 | Cite as

Immunohistochemical expression of tumor necrosis factor-α in sepsis-induced lung injury

  • Tomoko Miyashita
  • Nobuyuki Kakimoto
  • Yuko Ishida
  • Takahito Hayashi
  • Akihiko Kimura
  • Michael Tsokos
  • Toshikazu Kondo
Original Article

Abstract

Sepsis is asevere, systemic inflammatory disease caused by various kinds of microbes. In the present study, we immunohistochemically examined tumor necrosis factor (TNF)-α expression in sepsis-induced lung injury, and discuss its availability for the postmortem diagnosis of sepsis. Lung samples were obtained from different lung lobes of nine sepsis and eight control cases with postmortem intervals between 12 and 48 hours. Immunohistochemical analysis using anti-human TNF-α rabbit polyclonal antibodies was carried out. In sepsis and control groups, immunoreactivity for TNF-α was strongly detected in round-shaped mononuclear cells. The intensity of the immunohistochemical staining reaction was homogeneous in all lobes of the lungs examined. Furthermore, a double-color immunofluorescence analysis revealed that macrophages were a main cellular source of TNF-α in the lungs. To semiquantitatively evaluate the expression of TNF-α in the lungs, the ratios of the number of TNF-α-positive macrophages to total number of macrophages were calculated. Morphometrically, in lungs of the sepsis group, the ratio of TNF-α-positive macrophages was significantly higher, compared with the control group. TNF-α expression in the lungs can become a clue for the postmortem diagnosis of pulmonary inflammation, especially, TNF-α-positive ratios of 20% of more might suggest sepsis as the cause of death.

Key Words

Forensic pathology sepsis inflammation TNF-α immunohistochemistory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reichelt U, Jung, R, Nierhaus A, Tsokos M. Serial monitoring of interleukin-1 beta, soluble interleukin-2 receptor and lipopolysaccharide binding protein levels after death. A comparative evaluation of potential postmortem markers of sepsis. Int J Legal Med 2005;119:80–87.PubMedCrossRefGoogle Scholar
  2. 2.
    Tsokos M. Immunohistochemical detection of sepsis-induced lung injury in human autopsy material. Leg Med 2003;5:73–86.CrossRefGoogle Scholar
  3. 3.
    Tsokos M, Pufe T, Paulsen F, Anders S, Mentlein R. Pulmonary expression of vascular endothelial growth factor in sepsis. Arch Pathol Lab Med 2003;127:331–335.PubMedGoogle Scholar
  4. 4.
    Tsokos M, Anders S, Paulsen F. Lectin binding patterns of alveolar epithelium and subepithelial seromucous glands of the bronchi in sepsis and controls—an approach to characterize the non-specific immunological response of the human lung to sepsis. Virchows Arch 2002;440:181–186.PubMedCrossRefGoogle Scholar
  5. 5.
    Tsokos M, Fehlauer F. Post-mortem markers of sepsis: an immunohistochemical study using VLA-4 (CD49d/CD29) and ICAM-1 (CD54) for the detection of sepsis-induced lung injury. Int J Legal Med 2001;114:291–294.PubMedCrossRefGoogle Scholar
  6. 6.
    Tsokos M, Reichelt U, Nierhaus A, Puschel K. Serum procalcitonin (PCT): a valuable biochemical parameter for the postmortem diagnosis of sepsis. Int J Legal Med 2001;114:237–243.PubMedCrossRefGoogle Scholar
  7. 7.
    Tsokos M, Anders S, Paulsen F, Fehlauer F, Puschel K. Comparative evaluation of pulmonary lactoferrin and lysozyme immunoreactivity for the postmortem diagnosis of death due to sepsis. Virchows Arch 2001;438:376–381.PubMedCrossRefGoogle Scholar
  8. 8.
    Tsokos M, Reichelt U, Jung R, Nierhaus A, Puschel K. Interleukin-6 and C-reactive protein serum levels in sepsis-related fatalities during the early postmortem period. Forensic Sci Int 2001;119:47–56.PubMedCrossRefGoogle Scholar
  9. 9.
    Tsokos M, Fehlauer F, Puschel K. Immunohistochemical expression of E-selectin in sepsis-induced lung injury. Int J Legal Med 2000;113:338–342.PubMedCrossRefGoogle Scholar
  10. 10.
    Ortmann C, Brinkmann B. The expression of P-selectin in inflammatory and non-inflammatory lung tissue. Int J Legal Med 1997;110:155–158.PubMedCrossRefGoogle Scholar
  11. 11.
    Czermak BJ, Breckwoldt M, Ravage ZB, et al. Mechanisms of enhanced lung injury during sepsis. Am J Pathol 1999;154:1057–1065.PubMedGoogle Scholar
  12. 12.
    Kaplan RL, Sahn SA, Petty TL. Incidence and outcome of the respiratory distress syndrome in gram-negative sepsis. Arch Intern Med 1979;139:867–869.PubMedCrossRefGoogle Scholar
  13. 13.
    Weiland JE, Davis WB, Holter JF, Mohammed JR, Dorinsky PM, Gadek JE. Lung neutrophils in the adult respiratory distress syndrome. Clinical and pathophysiologic significance. Am Rev Respir Dis 1986;133:218–225.PubMedGoogle Scholar
  14. 14.
    Oberhoffer M, Karzai W, Meier-Hellmann A, Bogel D, Fassbinder J, Reinhart K. Sensitivity and specificity of various markers of inflammation for the prediction of tumor necrosis factor-alpha and interleukin-6 in patients with sepsis. Crit Care Med 1999;27:1814–1818.PubMedCrossRefGoogle Scholar
  15. 15.
    Walley KR, Lukacs NW, Standiford TJ, Strieter RM, Kunkel SL. Balance of inflammatory cytokines related to severity and mortality of murine sepsis. Infect Immun 1996;64:4733–4738.PubMedGoogle Scholar
  16. 16.
    Blackwell TS, Christman JW. Sepsis and cytokines: current status. Br J Anaesth 1996;77:110–117.PubMedGoogle Scholar
  17. 17.
    Ebach, DR, Riehl TE, Stenson WF. Opposing effects of tumor necrosis factor receptor 1 and 2 in sepsis due to cecal ligation and puncture. Shock 2005;23:311–318.PubMedCrossRefGoogle Scholar
  18. 18.
    Reinhart K, Karzai W. Anti-tumor necrosis factor therapy in sepsis: update on clinical trials and lessons learned. Crit Care Med 2001;29:S121-S125.PubMedCrossRefGoogle Scholar
  19. 19.
    Ishida Y, Kondo T, Tsuneyama K, Lu P, Takayasu T, Mukaida N. The pathogenic roles of tumor necrosis factor receptor p55 in acetaminophen-induced liver injury in mice. J Leukoc Biol 2004;75:59–67.PubMedCrossRefGoogle Scholar
  20. 20.
    Ishida Y, Maegawa T, Kondo T, et al. Essential involvement of IFN-γ in Clostridium difficile toxin A-induced enteritis. J Immunol 2004;172:3018–3025.PubMedGoogle Scholar
  21. 21.
    Ishida Y, Kondo T, Takayasu T, Iwakura Y, Mukaida N. The essential involvement of cross-talk between IFN-γ and TGF-β in the skin wound-healing process. J. Immunol 2004;172:1848–1855.PubMedGoogle Scholar
  22. 22.
    Hayashi T, Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T. Forensic application of VEGF expression to skin wound age determination. Int J Legal Med 2004;118:320–325.PubMedCrossRefGoogle Scholar
  23. 23.
    Kondo T, Tanaka J, Ishida Y, Mori R, Takayasu T, Ohshima T. Ubiquitin expression in skin wounds and its application to forensic wound age determination. Int J Legal Med 2002;116:267–272.PubMedCrossRefGoogle Scholar
  24. 24.
    Kondo T, Ohshima T, Mori R, Guan DW, Ohshima K, Eisenmenger W. Immunohistochemical detection of chemokines in human skin wounds and its application to wound age determination. Int J Legal Med 2002;11:87–91.CrossRefGoogle Scholar
  25. 25.
    Kondo T, Ohshima T, Eisenmenger W. Immunohistochemical and morphometrical study on the temporal expression of interleukin-1α (IL-1α) in human skin wounds for forensic wound age determination. Int J Legal Med 1999;112:249–252.PubMedCrossRefGoogle Scholar
  26. 26.
    Tracey KJ. Tumor necrosis factor-alpha. In: Thomson A ed. The Cytokine Handbook 2nd ed., London: Academic Press, 1994, pp. 289–304.Google Scholar
  27. 27.
    Kondo T, Ohshima T. The dynamics of inflammatory cytokines in the healing process of mouse skin wound: a preliminary study for possible wound age determination. Int. J Legal Med 1996;108:231–236.PubMedCrossRefGoogle Scholar
  28. 28.
    Grellner W. Time-dependent immunohistochemical detection of proinflammatory cytokines (IL-1β, IL-6, TNF-α) in human skin wounds. Forensic Sci Int 2002;130:90–96.PubMedCrossRefGoogle Scholar
  29. 29.
    Grellner W, Georg T, Wilske J. Quantitative analysis of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) in human skin wounds. Forensic Sci Int. 2000;113:251–264.PubMedCrossRefGoogle Scholar
  30. 30.
    Mori R, Kondo T, Ohshima T, Ishida Y, Mukaida N. Accelerated wound healing in tumor necrosis factor receptor p55-deficient mice with reduced leukocyte infiltration. FASEB J. 2002;16:963–974.PubMedCrossRefGoogle Scholar
  31. 31.
    Betz P, Nerlich A, Penning R, Eisenmenger W. Alveolar macrophages and the diagnosis of drowning. Forensic Sci Int 1993;62:217–224.PubMedCrossRefGoogle Scholar
  32. 32.
    Betz P, Nerlich A, Penning R, Eisenmenger W. Pulmonary giant cells and their significance for the diagnosis of asphyxiation. Int J Legal Med 1993;106:156–159.PubMedCrossRefGoogle Scholar
  33. 33.
    Jannsen W. Forensic Histopathology, Berlin: Springer-Verlag, 1984, pp. 142–155.Google Scholar
  34. 34.
    Neumann B, Machleidt T, Lifka A, et al. Crucial role of 55-kilodalton TNF receptor in TNF-induced adhesion molecule expression and leukocyte organ infiltration. J Immunol 1996;156:1587–1593.PubMedGoogle Scholar
  35. 35.
    Dinarello CA, Cannon JG, Wolff SM, et al. Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin 1. J Exp Med 1986;163:1433–1450.PubMedCrossRefGoogle Scholar
  36. 36.
    Matsushima K, Oppenheim JJ. Interleukin 8 and MCAF: novel inflammatory cytokines inducible by IL-1 and TNF. Cytokine 1989;1:2–13.PubMedCrossRefGoogle Scholar
  37. 37.
    Schall TJ. The chemokines. In: Thomson A ed. The Cytokine Handbook 2nd ed., London: Academic Press, 1994, pp. 419–460.Google Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  • Tomoko Miyashita
    • 2
  • Nobuyuki Kakimoto
    • 2
  • Yuko Ishida
    • 2
  • Takahito Hayashi
    • 2
  • Akihiko Kimura
    • 2
  • Michael Tsokos
    • 1
  • Toshikazu Kondo
    • 2
  1. 1.Institute for Forensic MedicineUniversity of HamburgHamburgGermany
  2. 2.Department of Forensic MedicineWakayama Medical UniversityWakayamaJapan

Personalised recommendations