Forensic Science, Medicine, and Pathology

, Volume 1, Issue 2, pp 159–161 | Cite as

Nonhuman DNA

DNA Reviews

Abstract

DNA has now been used to aid criminal investigation for more than 20 years. The vast majority of this evidence has been produced by profiling of human genetic material. However, DNA profiling technology is not restricted to the human genome. Regions of genetic material displaying similar characteristics to markers used for forensic purposes in the human genome have been identified in many other animal species. Although nonhuman DNA profiling has been used for a small number of forensic investigations, the full potential of this evidence type has yet to be realized.

Key Words

Forensic pathology DNA profiling canine feline mt DNA STR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hernández P, Dorado G, Cabrera A, Laurie DA, Snape JW, Martin A. Rapid verification of wheat-Hordeum introgressions by direct staining of SCAR, STS and SSR amplicons. Genome 2002;45:198–203.PubMedCrossRefGoogle Scholar
  2. 2.
    Hoelzel AR. Shark fishing in fin soup. Cons Gene 2001;2:69–72.CrossRefGoogle Scholar
  3. 3.
    Miller-Coyle H, Palmbach T, Juliano N, Ladd C, Lee HC. An overview of DNA methods for the identification and individualization of marijuana. Croat Med J 2003;44:315–321.PubMedGoogle Scholar
  4. 4.
    Encams, dog fouling and the law: a guide for the public. http://www.encams.org/information/publications/litter and dog fouling/dogfoul.pdf. Accessed September 9, 2003.Google Scholar
  5. 5.
    Menotti-Raymond MA, David VA, O’Brien SJ. Pet cat hair implicates murder suspect. Nature 1997;386:774.PubMedCrossRefGoogle Scholar
  6. 6.
    Jeffreys AJ, Wilson V, Thein SL. Hypervariable ‘minisatellite’ regions in human DNA. Nature 1984;314:67–73.CrossRefGoogle Scholar
  7. 7.
    Ostrander EA, Sprague Jr. GF, Rine J. Identification and characterisation of dinucleotide repeat (CA)n markers for genetic mapping in dog. Genomics 1993;16:207–213.PubMedCrossRefGoogle Scholar
  8. 8.
    Graham EAM. DNA reviews: MiniSTRs. Forensic Sci Med Patholo 2005;1:39–42.Google Scholar
  9. 9.
    Francisco LV, Langston AA, Mellersh CS, Neal CL, Ostrander EA. A Class of highly polymorphic tetranucleotide repeats for canine genetic mapping. Mamm Genome 1996;7:359–362.PubMedCrossRefGoogle Scholar
  10. 10.
    Richman M, Mellersh S, André C, Galibert F, Ostrander EA. Characterization of a minimal screening set of 172 microsatellite markers for genome-wide screens of the canine genome. J Biochem Biophys Methods 2001;47:137–149.PubMedCrossRefGoogle Scholar
  11. 11.
    Eichmann C, Berger B, Parson W. A proposed nomenclature for 15 canine-specific polymorphic STR loci for forensic purposes. Int J Legal Med 2004;118:249–266.PubMedCrossRefGoogle Scholar
  12. 12.
    DeNise S, Johnston E, Halverson J, et al. Power of exclusion for parentage verification and probability of match for identity in American kennel club breeds using 17 canine microsatellite markers. Anim Genet 2004;35:14–17.PubMedCrossRefGoogle Scholar
  13. 13.
    Müller S, Flekna G, Müller M, Brem G. Use of canine microsatellite polymorphisms in forensic examinations. J Hered 1999;90:55–56.PubMedCrossRefGoogle Scholar
  14. 14.
    Wetton JH, Higgs JE, Spriggs AC, Roney CA, Tsang CSF, Foster AP. Mitochondrial profiling of dog hairs. Forensic Sci Int 2003;133:235–241.PubMedCrossRefGoogle Scholar
  15. 15.
    Gill P, Ivanov PL, Kimpton C, et al. Identification of the remains of the Romanov family by DNA analysis. Nat Genet 1994;6:130–135.PubMedCrossRefGoogle Scholar
  16. 16.
    Anderson S, Bankier AT, Barrell BG, et al. Sequence and organization of the human mitochondrial genome. Nature 1981;290:457–465.PubMedCrossRefGoogle Scholar
  17. 17.
    Savolainen SP, Rosen B, Holmberg A, Leitner T, Uhlen M. Lundeberg J. Sequence analysis of domestic dog mitochondrial DNA for forensic use. J Forensic Sci 1997;42(2):593–600.PubMedGoogle Scholar
  18. 18.
    Pfeiffer I, Völkel I, Täubert H, Brenig B. Forensic DNA-typing of dog hair: DNA-extraction and PCR amplification. Forensic Sci Int 2004;141:149–151.PubMedCrossRefGoogle Scholar
  19. 19.
    Heath C, Graham EAM, Rutty GN. Extraction and amplification of nuclear DNA from shed dog hairs (B174). Proc AAFS 2005;11:122.Google Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  1. 1.Forensic Pathology Unit, Department of Cancer Studies and Molecular MedicineUniversity of LeicesterLeicesterUK

Personalised recommendations