Skip to main content
Log in

Role of mitochondrial mutations in cancer

  • Review
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

A role for mitochondria in cancer causation has been implicated through identification of mutations in the mitochondrial DNA (mtDNA) and in nuclear-encoded mitochondrial genes. Although many mtDNA mutations were detected in common tumors, an unequivocal causal link between heritable mitochondrial abnormalities and cancer is provided only by the germ line mutations in the nuclear-encoded genes for succinate dehydrogenase (mitochondrial complex II) and fumarate hydratase (fumarase). The absence of evidence for highly penetrant tumors caused by inherited mtDNA mutations contrasts with the frequent occurrence of mtDNA mutations in many different tumor types. Thus, either the majority of diverse mtDNA mutations observed in tumors are not important for the process of carcinogenesis or that they play a common oncogenic role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smeitink, J, van den HL, DiMauro S. The genetics and pathology of oxidative phosphorylation. Nat Rev Genet 2:342–352, 2001.

    Article  PubMed  CAS  Google Scholar 

  2. Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407, 2005.

    Article  PubMed  CAS  Google Scholar 

  3. Saraste M. Oxidative phosphorylation at the fin de siecle. Science 283:1488–1493, 1999.

    Article  PubMed  CAS  Google Scholar 

  4. Carew JS, Huang P. Mitochondrial defects in cancer. Mol Cancer 1:9, 2002.

    Article  PubMed  Google Scholar 

  5. Czarnecka AM, Golik P, Bartnik E. Mitochondrial DNA mutations in human neoplasia. J Appl Genet 47:67–78, 2006.

    PubMed  Google Scholar 

  6. Copeland WC, Wachsman JT, Johnson FM, Penta JS. Mitochondrial DNA alterations in cancer. Cancer Invest 20:557–569, 2002.

    Article  PubMed  CAS  Google Scholar 

  7. Baysal BE, Ferrell RE, Wilett-Brozick JE, et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287:848–851, 2000.

    Article  PubMed  CAS  Google Scholar 

  8. Baysal BE, Willett-Brozick JE, Lawrence EC, et al. Prevalence of SDHB, SDHC, and SDHD germline mutations in clinic patients with head and neck paragangliomas. J Med Genet 39:178–183, 2002.

    Article  PubMed  CAS  Google Scholar 

  9. Neumann HP, Bausch B, McWhinney SR, et al. Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med 346: 1459–1466, 2002.

    Article  PubMed  CAS  Google Scholar 

  10. Bayley JP, Devilee P, Taschner PE. The SDH mutation database: an online resource for succinate dehydrogenase sequence variants involved in pheochromocytoma, paraganglioma and mitochondrial complex II deficiency. BMC Med Genet 6:39, 2005.

    Article  PubMed  CAS  Google Scholar 

  11. Tomlinson IP, Alam NA, Rowan AJ, et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 30:406–410, 2002.

    Article  PubMed  CAS  Google Scholar 

  12. Cecchini G. Function and structure of complex II of the respiratory chain. Annu Rev Biochem 72:77–109, 2003.

    Article  PubMed  CAS  Google Scholar 

  13. Astrom K, Cohen JE, Willett-Brozick JE, Aston CE, Baysal BE. Altitude is a phenotypic modifier in hereditary paraganglioma type 1: evidence for an oxygen-sensing defect. Hum Genet 113:228–237, 2003.

    Article  PubMed  Google Scholar 

  14. Dahia PL, Ross KN, Wright ME, et al. A HIF1 alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet 1:72–80, 2005.

    Article  PubMed  CAS  Google Scholar 

  15. Selak MA, Armour SM, MacKenzie ED, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7:77–85, 2005.

    Article  PubMed  CAS  Google Scholar 

  16. Pugh CW, Ratcliffe PJ. The von Hippel-Lindau tumor suppressor, hypoxia-inducible factor-1 (HIF-1) degradation, and cancer pathogenesis. Semin Cancer Biol 13:83–89, 2003.

    Article  PubMed  CAS  Google Scholar 

  17. Isaacs JS, Jung YJ, Mole DR, et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8:143–153, 2005.

    Article  PubMed  CAS  Google Scholar 

  18. Flake GP, Andersen J, Dixon D. Etiology and pathogenesis of uterine leiomyomas: a review. Environ Health Perspect 111:1037–1054, 2003.

    PubMed  CAS  Google Scholar 

  19. Vanharanta S, Pollard PJ, Lehtonen HJ, et al. Distinct expression profile in fumarate-hydratase-deficient uterine fibroids. Hum Mol Genet 15:97–103, 2006.

    Article  PubMed  CAS  Google Scholar 

  20. Pavlovich CP, Schmidt LS. Searching for the hereditary causes of renal-cell carcinoma. Nat Rev Cancer 4:381–393, 2004.

    Article  PubMed  CAS  Google Scholar 

  21. Baysal BE. Krebs cycle enzymes as tumor suppressors. Drug Discovery Today: Disease Mechanisms 2:247–254, 2005.

    Article  CAS  Google Scholar 

  22. Ishii N, Fujii M, Hartman PS, et al. A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394:694–697, 1998.

    Article  PubMed  CAS  Google Scholar 

  23. Rodriguez-Cuevas S, Lopez-Garza J, Labastida-Almendaro S. Carotid body tumors in inhabitants of altitudes higher than 2000 meters above sea level. Head Neck 20:374–378, 1998.

    Article  PubMed  CAS  Google Scholar 

  24. Arias-Stella J, Valcarcel J. Chief cell hyperplasia in the human carotid body at high altitudes; physiologic and pathologic significance. Hum Pathol 7:361–373, 1976.

    Article  PubMed  CAS  Google Scholar 

  25. Jech M, Alvarado-Cabrero I, Albores-Saavedra J, Dahia PL, Tischler AS. Genetic analysis of high altitude paragangliomas. Endocrine Pathol 17:201–202, 2006.

    Article  Google Scholar 

  26. Baysal BE. Genomic imprinting and environment in hereditary paraganglioma. Am J Med Genet C Semin Med Genet 129:85–90, 2004.

    Article  PubMed  Google Scholar 

  27. Weir EK, Lopez-Barneo J, Buckler KJ, Archer SL. Acute oxygen-sensing mechanisms. N Engl J Med 353:2042–2055, 2005.

    Article  PubMed  CAS  Google Scholar 

  28. Shoffner JM. Oxidative phosphorylation diseases. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The metabolic and molecular basis of inherited disease. New York, NY: McGraw-Hill, 2001; 2367–2423.

    Google Scholar 

  29. Da Sylva TR, Connor A, Mburu Y, Keystone E, Wu GE. Somatic mutations in the mitochondria of rheumatoid arthritis synoviocytes. Arthritis Res Ther 7:R844-R851, 2005.

    Article  PubMed  CAS  Google Scholar 

  30. Salas A, Yao YG, Macaulay V, Vega A, Carracedo A, Bandelt HJ. A critical reassessment of the role of mitochondria in tumorigenesis. PLoS Med 2:e296, 2005.

    Article  PubMed  CAS  Google Scholar 

  31. Gallardo ME, Moreno-Loshuertos R, Lopez C, et al. m.6267G>A: a recurrent mutation in the human mitochondrial DNA that reduces cytochrome c oxidase activity and is associated with tumors. Hum Mutat 27:575–582, 2006.

    Article  PubMed  CAS  Google Scholar 

  32. Petros JA, Baumann AK, Ruiz-Pesini E, et al. mtDNA mutations increase tumorigenenicity in prostate cancer. Proc Natl Acad Sci USA 102:719–724, 2005.

    Article  PubMed  CAS  Google Scholar 

  33. Shidara Y, Yamagata K, Kanamori T, et al. Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. Cancer Res 65:1655–1663, 2005.

    Article  PubMed  CAS  Google Scholar 

  34. Futreal PA, Coin L, Marshall M, et al. A census of human cancer genes. Nat Rev Cancer 4:177–183, 2004.

    Article  PubMed  CAS  Google Scholar 

  35. Weir B, Zhao X, Meyerson M. Somatic alterations in the human cancer genome. Cancer Cell 6:433–438, 2004.

    Article  PubMed  CAS  Google Scholar 

  36. Rodriguez-Viciana P, Tetsu O, Tidyman WE, et al. Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science 311:1287–1290, 2006.

    Article  PubMed  CAS  Google Scholar 

  37. Coller HA, Khrapko K, Bodyak ND, Nekhaev, E, Herrero-Jimenez P, Thilly WG. High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection. Nat Genet 28:147–150, 2001.

    Article  PubMed  CAS  Google Scholar 

  38. Piruat JI, Pintado CO, Ortega-Saenz P, Roche M, Lopez-Barneo J. The mitochondrial SDHD gene is required for early embryogenesis, and its partial deficiency results in persistent carotid body glomus cell activation with full responsiveness to hypoxia. Mol Cell Biol 24:10933–10940, 2004.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baysal, B.E. Role of mitochondrial mutations in cancer. Endocr Pathol 17, 203–211 (2006). https://doi.org/10.1385/EP:17:3:203

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/EP:17:3:203

Key Words

Navigation