Endocrine Pathology

, Volume 14, Issue 2, pp 117–121 | Cite as

Endocrine pathology in translational medicine: An overview of current and future prospects

  • Robert Yoshiyuki Osamura
  • Nobue Kumaki
  • Hiroshi Kajiwara
  • Noboru Egashira
  • Syunsuke Miyai
  • Susumu Takekoshi
  • Masanori Yasuda
  • Shinobu Umemura
9th Japan EPS


With applications of recent development of molecular techniques, endocrine pathology, as a scientific discipline, has been expanding its field to cover not only the pathologic diagnosis but also molecular mechanisms of hormone production and secretion as well as implementation for appropriate therapeutic approaches. In this review, the discussion includes molecular markers for the diagnosis of neuroendocrine (NE) tumors focusing on various proteins for the transport of secretory granules. MIB-1, proliferative indices, is particularly useful to access biologic activities of NE tumors. The specific hormone production relies on the expression of combination of transcription factors and proteolytic digestion (processing) of prohormones by specific enzymes, prohormone convertases PC1/3 and PC2. Inappropriate processing of prohormones sometimes are related to neoplastic conditions. Endocrine therapeutics have been focusing on the compensation of deficient hormones by transplanting specific hormone producing cells including embryonic stem (ES) cells. The endocrine pathology is expected to play a major role in translational medicine.

Key Words

Endocrine pathology translational research hormone production transcription factors gene therapeutics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sudhof TC. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375:645–653, 1995.PubMedCrossRefGoogle Scholar
  2. 2.
    Chen YA, Scheller RH. SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol 2:98–106, 2001.PubMedCrossRefGoogle Scholar
  3. 3.
    Wick MR. Immunohistology of neuroendocrine and neuroectodermal tumors. Semin Diagn Pathol 17:194–203, 2000.PubMedGoogle Scholar
  4. 4.
    Hocker M, John M, Anagnostopoulos J, Buhr HJ, Solimena M, Gasnier B, Henry JP, Wang TC, Wiedenmann B. Molecular dissection of regulated secretory pathways in human gastric enterochromaffin-like cells: an immunohistochemical analysis. Histochem Cell Biol 112:205–214, 1999.PubMedCrossRefGoogle Scholar
  5. 5.
    Graff L, Castrop F, Bauer M, Hofler H, Gratzl M. Expression of vesicular monoamine transporters, synaptosomal-associated protein 25 and syntaxin 1: a signature of human small cell lung carcinoma. Cancer Res 61:2138–2144, 2001.PubMedGoogle Scholar
  6. 6.
    Majo G, Ferrer I, Marsal J, Blasi J, Aguado F. Immunocytochemical analysis of the synaptic proteins SNAP-25 and Rab3A in human pituitary adenomas. Overexpression of SNAP-25 in the mammosomatotroph lineages. J Pathol 183:440–446, 1997.PubMedCrossRefGoogle Scholar
  7. 7.
    Solcia E, Kloppel G, Sobin LH. WHO International histological classification of tumors: histological typing of endocrine tumors, 2nd ed. New York: Springer, 2000.Google Scholar
  8. 8.
    van der Harst E, Bruining HA, Jaap Bonjer H, et al. Proliferative index in pheochromocytomas: does it predict the occurrence of metastases? J Pathol 191:175–180, 2000.PubMedCrossRefGoogle Scholar
  9. 9.
    Kumaki N, Kajiwara H, Kameyama K, DeLellis RA, Asa SL, Osamura RY, Takami H. Prediction of malignant behavior of pheochromocytomas and paragangliomas using immunohistochemical techniques. Endocr Pathol 13:149–156, 2002.PubMedCrossRefGoogle Scholar
  10. 10.
    Ingraham HA, Chen RP, Mangalam HJ, Elsholtz HP, Flynn SE, Lin CR, Simmons DM, Swanson L, Rosenfeld MG. A tissue-specific transcription factor containing a homeodomain specifies a pituitary phenotype. Cell 55:519–529, 1988.PubMedCrossRefGoogle Scholar
  11. 11.
    Scully KM, Rosenfeld MG. Pituitary development: regulatory codes in mammalian organogenesis. Science 295:2231–2235, 2002.PubMedCrossRefGoogle Scholar
  12. 12.
    Pellegrini Bouiller I, Manrique C, Gunz G, Grino M, Zamora AJ, Figarella Branger D, Grisoli F, Jaquet P, Enjalbert A. Expression of the members of the Ptx family of transcription factors in human pituitary adenomas. J Clin Endocrinol Metab 84:2212–2220, 1999.PubMedCrossRefGoogle Scholar
  13. 13.
    Cushman LJ, Watkins Chow DE, Brinkmeier ML, Raetzman LT, Radak AL, Lloyd RV, Camper SA. Persistent Propl expression delays gonadotrope differentiation and enhances pituitary tumor susceptibility. Hum Mol Genet 10:1141–1153, 2001.PubMedCrossRefGoogle Scholar
  14. 14.
    Zhao L, Bakke M, Krimkevich Y, Cushman LJ, Parlow AF, Camper SA, Parker KL. Hypomorphic phenotype in mice with pituitary-specific knockout of steroidogenic factor 1. Genesis 30:65–69, 2001.PubMedCrossRefGoogle Scholar
  15. 15.
    Kurotani R, Yoshimura S, Iwasaki Y, Inoue K, Teramoto A, Osamura RY. Exogenous expression of Pit-1 in AtT-20 corticotropic cells induces endogenous growth hormone gene transcription. J Endocrinol 172:477–487, 2002.PubMedCrossRefGoogle Scholar
  16. 16.
    Akino K, Ohtsuru A, Yano H, Ozeki S, Namba H, Nakashima M, Ito M, Matsumoto T, Yamashita S. Antisense inhibition of parathyroid hormone-related peptide gene expression reduces malignant pituitary tumor progression and metastases in the rat. Cancer Res 56:77–86, 1996.PubMedGoogle Scholar
  17. 17.
    Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, Rubin MA, Chinnaiyan AM. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629, 2002.PubMedCrossRefGoogle Scholar
  18. 18.
    Sanno N, Tahara S, Kurotani R, Matsuno A, Teramoto A, Osamura RY. Cytochemical and molecular biological aspects of the pituitary and pituitary adenomas—cell differentiation and transcription factors. Prog Histochem Cytochem 36:263–299, 2001.PubMedGoogle Scholar
  19. 19.
    Motoyoshi S, Shirotani T, Araki E, Sakai K, Kaneko K, Motoshima H, Yoshizato K, Shirakami A, Kishikawa H, Shichiri M. Cellular characterization of pituitary adenoma cell line (AtT20 cell) transfected with insulin, glucose transporter type 2 (GLUT2) and glucokinase genes: insulin secretion in response to physiological concentrations of glucose. Diabetologia 41:1492–1501, 1998.PubMedCrossRefGoogle Scholar
  20. 20.
    Efrat S. Prospects for gene therapy of insulin-dependent diabetes mellitus. Diabetologia 41:1401–1409, 1998.PubMedCrossRefGoogle Scholar
  21. 21.
    Goldfine ID, German MS, Tseng HC, Wang J, Bolaffi JL, Chen JW, Olson DC, Rothman SS. The endocrine secretion of human insulin and growth hormone by exocrine glands of the gastrointestinal tract. Nat Biotechnol 15:1378–1382, 1997.PubMedCrossRefGoogle Scholar
  22. 22.
    Soria B, Roche E, Berna G, Leon Quinto T, Reig JA, Martin F. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49:157–162, 2000.PubMedCrossRefGoogle Scholar
  23. 23.
    Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292:1389–1394, 2001.PubMedCrossRefGoogle Scholar
  24. 24.
    Assady S, Maor G, Amit M, Itskovitz Eldor J, Skorecki KL, Tzukerman M. Insulin production by human embryonic stem cells. Diabetes 50:1691–1697, 2001.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  • Robert Yoshiyuki Osamura
    • 1
  • Nobue Kumaki
    • 1
  • Hiroshi Kajiwara
    • 1
  • Noboru Egashira
    • 1
  • Syunsuke Miyai
    • 1
  • Susumu Takekoshi
    • 1
  • Masanori Yasuda
    • 1
  • Shinobu Umemura
    • 1
  1. 1.Department of PathologyTokai University School of Medicine, Boseidai IseharacityKanagawaJapan

Personalised recommendations