Endocrine Pathology

, Volume 12, Issue 1, pp 39–47 | Cite as

Cyclins D1 and D3 and topoisomerase IIα in inactive pituitary adenomas

  • W. Saeger
  • S. Schreiber
  • D. K. Lüdecke
Clinical research

Abstract

The oncogenes cyclin D1 and D3 are overexpressed in many tumors. Topoisomerase IIα is found in proliferating cells. The immunohistological expression of cyclin D1, cyclin D3, and Topoisomerase IIα was studied in a collection of 60 clinically inactive surgically removed pituitary adenomas of the follicle-stimulating hormone/luteinizing hormone (FSH/LH) cell complex (20 null cell adenomas, 20 oncocytomas, and 20 FSH/LH cell adenomas) for correlation with other proliferation markers (Ki-67, PCNA) and with clinical data. Whereas cyclin D1 was positive only in one invasive null cell adenoma (1.7%) with some p53-positive nuclei, cyclin D3 was overexpressed in the nuclei of 41 tumors (68%).

Topoisomerase IIα was demonstrated in the nuclei of 42 adenomas (70%) with no significant differences discernible between the three adenoma subtypes. There was no significant correlation to the time of development of tumor symptoms, but a correlation of Topoisomerase IIα with cyclin D3 and the proliferation marker Ki-67 (Mib1). From these data we conclude that cyclin D3 and Toposomerase IIα appear to be additional markers for proliferation which can be used for prognosis index in surgical pathology of the pituitary.

Key words

Pituitary adenomas immunohistochemistry cyclins topoisomerase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atkin SL, Green VL, Hipkin LJ, et al. A comparison of proliferation indices in human anterior pituitary adenomas using formalin-fixed tissue and in vitro cell culture. J Neurosurg 87:85–88, 1997.PubMedGoogle Scholar
  2. 2.
    Amar AP, Hinton DR, Krieger MD, Weiss MH. Invasive pituitary adenonmas: significance of proliferation parameters. Pituitary 2:117–122, 1999.PubMedCrossRefGoogle Scholar
  3. 3.
    Shibuya M, Saito F, Miwa T, Davis RL, Wilson CB, Hoshino T. Histochemical study of pituitary adenomas with Ki-67 and anti-DNA polymerase alpha monoclonal antibodies, bromodeoxyuridine labeling, and nucleolar organizer region counts. Acta Neuropath (Berlin) 84:178–183, 1992.CrossRefGoogle Scholar
  4. 4.
    Hsu DW, Hedleywhyte ET. Clinical interpretation of special pathologic procedures applied to pituitary adenoma biopsies: Immuno-cytochemistry, electron microscopy, and cell proliferative studies. Endocrinologist 9:350–357, 1999.Google Scholar
  5. 5.
    Schreiber S, Saeger W, Lüdecke DK. Proliferation markers in different types of clinically non-secreting pituitary adenomas. Pituitary 1:213–220, 1999.PubMedCrossRefGoogle Scholar
  6. 6.
    Gandour-Edwards R, Kapadia SB, Janecka IP, martinez AJ, Barnes L. Biologic markers of invasive pituitary adenomas involving the sphenoid sinus. Modern Pathol 8:160–164, 1995.Google Scholar
  7. 7.
    Banerjee SK, De A, Sarkar DK. Colocalization of prolactin and proliferating cell nuclear antigen in the anterior pituitary during estrogen-induced pituitary tumors. Cancer Lett 87:139–144, 1994.PubMedCrossRefGoogle Scholar
  8. 8.
    Hsu DW, Hakin F, Biller BM, et al. Significance of proliferating cell nuclear antigen index in predicting pituitary adenoma recurrence. J Neurosurg 78:753–761, 1993.PubMedGoogle Scholar
  9. 9.
    McNicol AM, Sheperd M, Lane OP. Cell proliferation in pituitary adenomas; correlation with hormonal immunoreactivity. Abstract 14. J. Endocrinol Invest 14 (Suppl. 1):55–55, 1991.Google Scholar
  10. 10.
    Thapar K, Scheithauer BW, Kovasc K, Pernicone PJ, Laws ER, Jr. p53 expression in pituitary adenomas and carcinomas: Correlation with invasiveness and tumor growth fractions. Neurosurgery 38:765–770, 1996.PubMedCrossRefGoogle Scholar
  11. 11.
    Sumi T, Stefaneanu L, Kovasc K, Asa SL, Rindi G. Immunohistochemical study of p53 protein in human and animal pituitary tumors. Endocr Pathol 4:95–99, 1993.CrossRefGoogle Scholar
  12. 12.
    Buckley N, Bates AS, Broome JC, et al. P53 protein accumulates in Cushings adenomas and invasive non-functional adenomas. J Clin Endocrinol Metab 79:1513–1516, 1994.PubMedCrossRefGoogle Scholar
  13. 13.
    Kawamoto H, Uozumi T, Arita K, Yano T, Hirohata T. Analysis of the growth rate and cavernous sinus invasion of pituitary adenomas. Acta neurochir (Wien) 136:37–43, 1995.CrossRefGoogle Scholar
  14. 14.
    Thapar K, Kovasc K, Scheithauer BW, et al. Proliferative activity and invasiveness among pituitary adenomas and carcinomas: An analysis using the MIB-1 antibody. Neurosurgery 38:99–106, 1996.PubMedCrossRefGoogle Scholar
  15. 15.
    Berger JM, Gamblin SJ, Harrison SC, Wang JC. Structure and mechanism of DNA topoisomerase II. Nature 379:225–232, 1996.PubMedCrossRefGoogle Scholar
  16. 16.
    Tsutsui K, Tsutsui K, Okada S, et al. Molecular cloning of partial cDNAs for rat DNA topoisomerase II isoforms and their differential expression in brain development. J Biol Chem 268:19,076–19,083, 1993.Google Scholar
  17. 17.
    Lukas J, Bartkova J, Rohde M, Strauss M, Bartek J. Cyclin D1 is dispensable for G1 control in retinoblastoma gene-deficient cells independently of cdk4 activity. Mol Cell Biol 15:2600–2611, 1995.PubMedGoogle Scholar
  18. 18.
    Hunter T, Pines J. Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell 79:573–582, 1994.PubMedCrossRefGoogle Scholar
  19. 19.
    Bartkova J, Lukas J, Strauss M, Bartek J. Cyclin D1 oncoprotein aberrantly accumulates in malignancies of diverse histogenesis. Oncogene 10:775–778, 1995.PubMedGoogle Scholar
  20. 20.
    Bartkova J, Zemanova M, Bartek J. Abundance and subcellular localisation of cyclin D3 in human tumours. Int J Cancer 65:323–327, 1996.PubMedCrossRefGoogle Scholar
  21. 21.
    Metzger AK, Mohapatta G, Minn YA, et al. Multiple genetic abetrations including evidence of chromosome 11q13 rearrangement detected in pituitary adenomas by comparative genomic hybridization. J Neurosurg 90:306–314, 1999.PubMedGoogle Scholar
  22. 22.
    Qian X, Jin L, Lloyd RV. Aberrant DNA methylation of cyclin D2 and p27 genes in rodent pituitary tumor cell lines correlates with specific gene expression. Endocr Pathol 11:85–96, 2000.PubMedCrossRefGoogle Scholar
  23. 23.
    Lai R, Medeiros JL, Wilson CS, et al. Expression of the cell-cycle-related proteins E2F-1, p53, mdm-2, p21 (waf-1), and Ki-67 in multiple myeloma: Correlation with cyclin-D1 immunoreactivity. Modern Pathol 11:642–647, 1998.Google Scholar
  24. 24.
    Machen SK, Prayson RA. Cyclin D1 and MIB-1 immunohistochemistry in pilocytic astrocytomas: A study of 48 cases. Hum Pathol 29:1511–1516, 1998.PubMedCrossRefGoogle Scholar
  25. 25.
    Iino K, Sasano H, Yabuki N, et al. DNA topoisomerase II alpha and Ki-67 in human adrenocortical neoplasms: a possible marker of differentiation between adenomas and carcinomas. Modern Pathol 10:901–907, 1997.Google Scholar
  26. 26.
    Iwabuchi M, Sasano H, Hiwatashi N, et al. Serrated adenoma: a clinicopathological, DNA ploidy, and immunohistochemical study. Anticancer Res 20:1141–1147, 2000.PubMedGoogle Scholar
  27. 27.
    Rudolph P, Olsson H, Bonatz G, et al. Correlation between p53, c-erb B-2, and topoisomerase II alpha expression, DNA ploidy, hormonal receptor status and proliferation in 356 node-negative breast carcinomas: prognostic implications. J.Pathol 187:207–216, 1999.PubMedCrossRefGoogle Scholar
  28. 28.
    Tanoguchi K, Sasano H, Yabuki N, et al. Immunohistochemical and two-parameter flow cytometric studies of DNA topoisomerase II alpha in human epithelial ovarian carcinoma and germ cell tumor. Mod Pathol 11:186–193, 1998.PubMedGoogle Scholar
  29. 29.
    Ito K, Sasano H, Yabuki N, et al. Immunohistochemical study of Ki-67 and DNA topoisomerase II in human endometrium. Mod Pathol 10:289–294, 1997.PubMedGoogle Scholar
  30. 30.
    Lohri A, Reuter J, Gudat F, Herrmann R. Topoisomerase II alpha mRNA and tumour cell proliferation in non-Hodgkin's lymphoma. J clin Pathol 50:22–26, 1997.PubMedCrossRefGoogle Scholar
  31. 31.
    Rudolph P, Tronnier M, Menzel R, Moller M, Parwaresch R. Enhanced expression of Ki-67 topoisomerase II alpha, PCNA, p53 and p21 (WAF1/Cip1) reflecting proliferation and repair activity in UV-irradiated melanocytic nevi. Human pathol 29:1480–1487, 1998.CrossRefGoogle Scholar
  32. 32.
    Taniguchi K, Wakabayashi T, Yoshida T, et al. Immunohistochemical staining of DNA topoisomerase IIalpha in human gliomas. J Neurosurg 91:477–482, 1999.PubMedCrossRefGoogle Scholar
  33. 33.
    Tanaka C, Yoshimoto K, Yang P, et al. Infrequent mutations of p27(Kip1) gene and trisomy 12 in a subset of human pituitary adenomas. J Clin Endocrinol Metab 82:3141–3147, 1997.PubMedCrossRefGoogle Scholar
  34. 34.
    Bamberger CM, Fehn M, Bamberger AM, et al. Reduced expression levels of the cell-cycle inhibitor p27(Kip1) in human pituitary adenomas. Eur J Endocrinology 140:250–255, 1999.CrossRefGoogle Scholar
  35. 35.
    Lidhar K, Korbonits M, Jordan S, et al. Low expression of the cell cycle inhibitor p27(Kip1) in normal corticotroph cells, corticotroph tumors, and malignant pituitary tumors. J Clin Endocrinol Metab 84:3823–3840, 1999.PubMedCrossRefGoogle Scholar
  36. 36.
    Franklin DS, Godfrey VL, Lee HY, Kovalev GI, Schoonhoven R, ChenKiang S, Su LS, Xiong Y. CDK inhibitors p18(INK4c) and p27(Kip1) mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Gene Develop 12:2899–2911, 1998.Google Scholar
  37. 37.
    Bukholm IK, Berner JM, Nesland JM, BorresenDale AL. Expression of cyclin Ds in relation to p53 status in human breast carcinomas. Virchows Archiv 433:223–228, 1998.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2001

Authors and Affiliations

  • W. Saeger
    • 1
  • S. Schreiber
    • 1
  • D. K. Lüdecke
    • 2
  1. 1.Institute of PathologyMarienkrankenhausHamburgGermany
  2. 2.Clinic of Neurosurgery of the University of HamburgHamburgGermany

Personalised recommendations