Skip to main content
Log in

Testosterone and estradiol have specific differential modulatory effect on the proliferation of human thyroid papillary and follicular carcinoma cell lines independent of TSH action

  • Basic Research
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Differential effects of testosterone and estradiol on the proliferation of human thyroid papillary (NPA-87-1) and follicular (WRO-82-1) carcinoma cell lines were assessed by [3H]-thymidine incorporation and the cell number. Cells (2.5 × 105) plated in 24-well culture plates in 400 µL RPMI-1640 medium/well, under 5% CO2 and 95% air; at 37°C were exposed to linearly increasing concentrations of human thyroid-stimulating hormone (hTSH) (1.25–640 ng/mL), testosterone (1.25–640 ng/mL), or estradiol (1.25–640 pg/mL) for 24 h. Testosterone and estradiol increased the proliferation of NPA cell line in a dose-dependent manner; flutamide (an anti-androgen) and tamoxifen (an anti-estrogen) (10−8, 10−7, 10−6, and 10−5 mol/L) effectively inhibited the testosterone and estradiol-induced cell proliferation, respectively. While flutamide inhibited the stimulatory effect of testosterone on the WRO cell line, tamoxifen augmented the inhibitory effect of estradiol. TSH did not have any effect on the proliferation of NPA or WRO cell lines, and testosterone-estradiol had no impact on TSH binding to these cells. N-ethylmalemide (5α-reductase inhibitor) (10−8–10−5 mol/L) did not modulate basal and testosterone-induced cell proliferation, indicating the direct effect of testosterone without getting converted into dihydrotestosterone (DHT). Both the cell lines tested positive for androgen and estrogen receptors and were up-regulated by the respective ligands. It is concluded that testosterone and estradiol modify the proliferation of thyroid cancer cells through homologous up-regulation of their own receptors, which is independent of TSH, and their effects may vary according to the cell type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LiVolsi VA. Pathology. In: Braverman LE, Utiger RD, eds. The thyroid. Philadelphia, PA: Lippincott-Raven, 1996; 497.

    Google Scholar 

  2. Pacini F, De Groot LJ. Thyroid neoplasia. In: De Groot LJ, Jameson JL, eds. Endocrinology, IV edition, Vol. II. Philadelphia, PA: W.B. Saunders, 2001; 1541–1566.

    Google Scholar 

  3. Christianson R, Roti E, Vagenakis AG, Braverman E. The sex related difference in serum thyrotropin concentration is androgen mediated. Endocrinology 108:529–535, 1981.

    PubMed  CAS  Google Scholar 

  4. Paloyan E, Hoffmann C, Prinz RA. Castration induces a marked reduction in the incidence of thyroid cancers. Surgery 92:834–848, 1982.

    Google Scholar 

  5. Derwahl M, Broecker M, Kraiem Z. Thyrotrophin may not be the dominant growth factor in benign and malignant thyroid tumors. J Clin Endocrinol Metab 84:829–832, 1999.

    Article  PubMed  CAS  Google Scholar 

  6. Zielke A, Hofmann S, Planl U, Duh Q-Y, Clark OH, Rothmund M. Pleotropic effects of thyroid stimulating hormone in a differentiated thyroid cancer cell line. Studies on proliferation, thyroglobulin secretion, adhesion, migration and invasion. Exp Clin Endocrinol Diab 107:361–369, 1999.

    Article  CAS  Google Scholar 

  7. Sheridan PJ, McGill HC, Jean J, Lissitzky C, Martin PM. The primate thyroid gland contains receptors for androgens. Endocrinology 115:2690–2693, 1984.

    Google Scholar 

  8. Clark OH, Gerend PL, Davis M, Goretzki PE, Hoffman PG. Estrogen and thyroid stimulating hormone (TSH) receptors in neoplastic and non-neoplastic human thyroid tissue. J Surg Res 38:89–96, 1985.

    Article  PubMed  CAS  Google Scholar 

  9. Money SR, Muse W, Thelmo WL, Boeckl O, Pimpl W, Kaindl H, et al. Immunocytochemical localization of estrogen and progesterone receptors in human thyroid. Surgery 106:975–979, 1989.

    PubMed  CAS  Google Scholar 

  10. Miki H, Oshimo K, Inoue H, Morimoto T, Monden Y. Sex hormone receptors in human thyroid tissues. Cancer 66:1759–1762, 1990.

    Article  PubMed  CAS  Google Scholar 

  11. Morgan SJ, Darling DC. Culturing continuous cell lines. In: Graham JM, Billington D, eds. Animal cell culture. Oxford: BIOS Scientific, 1993; 37–50.

    Google Scholar 

  12. Yu M, Lin JD, Giuliano AE, Juillard GJF, van Here KAM, Van Herle AJ. Estrogen and progesterone receptor expression and E-2 regulated cell proliferation in four human thyroid cancer cell lines. Thyroidol Clin Exp 8:79–86, 1996.

    Google Scholar 

  13. Greenwood FC, Hunter WM, Glover JS. The preparation of I-labelled human growth hormone of high specific radioactivity. Biochem J 89:114–123, 1963.

    PubMed  CAS  Google Scholar 

  14. Pang XP, Hershman JM, Chung M, Pekary AE. Characterization of tumor necrosis factor alpha receptors in human and rat thyroid cells and regulation of the receptors by thyrotropin. Endocrinology 125:1783–1788, 1989.

    PubMed  CAS  Google Scholar 

  15. De Leo V, Lanzetta D, D’Antona D, La Marca A, Morgante G. Hormonal effects of flutamide in young women with polycystic ovary syndrome. J Clin Endocrinol Metab 83:99–102, 1998.

    Article  PubMed  Google Scholar 

  16. Aumuller G, Eicheler W, Renneberg H, Adermann K, Vilja P, Forsmann WG. Immunocytochemical evidence for differential subcellular localization of 5α-reductase isoenzymes in human tissues. Acta Anat 156:241–252, 1996.

    Article  PubMed  CAS  Google Scholar 

  17. Gross C, Yu M, Van Herle AJ, Giuliano AE, Juillard GJ. Presence of a specific antiestrogen binding site on human follicular thyroid carcinoma cell line (UCLA RO 82 W-1): inhibition by an endogenous ligand present in human serum. J Clin Endocrinol Metab 77:1361–1366, 1993.

    Article  PubMed  CAS  Google Scholar 

  18. Hoelting T, Duh QY, Clark OH, Herfath C. Tamoxifen antagonizes proliferation and invasion of estrogen receptor negative metastatic follicular thyroid cancer cells via protein kinase C. Cancer Lett 100:89–93, 1996.

    Article  PubMed  CAS  Google Scholar 

  19. Toi M, Bicknell R, Harris AL. Inhibition of colon and breast carcinoma cell growth by interleukin-4. Cancer Res 52:275–279, 1992.

    PubMed  CAS  Google Scholar 

  20. Bidey SP, Hill DJ, Eggo MC. Growth factors and goitrogenesis. J Endocrinol 160:321–332, 1999.

    Article  PubMed  CAS  Google Scholar 

  21. Rapoport B, Spaulding SW. Mechanism of action of thyrotropin and other thyroid growth factors. In: Braverman LE, Utiger RD, eds. The thyroid. Philadelphia, PA: Lippincott-Raven, 1996; 207–219.

    Google Scholar 

  22. Yen PM. Thyrotropin receptor mutations in thyroid diseases. Rev Endocr Metab Disorders 1:123–129, 2000.

    Article  CAS  Google Scholar 

  23. Kimura H, Yamashita S, Namba H, Usa T, Fujiyama K, Tsuruta M, et al. Impairment of the TSH signal transduction system in human thyroid carcinoma cells. Exp Cell Res 203:402–406, 1992.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Michael Aruldhas PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banu, K.S., Govindarajulu, P. & Aruldhas, M.M. Testosterone and estradiol have specific differential modulatory effect on the proliferation of human thyroid papillary and follicular carcinoma cell lines independent of TSH action. Endocr Pathol 12, 315–327 (2001). https://doi.org/10.1385/EP:12:3:315

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/EP:12:3:315

Key Words

Navigation