Skip to main content
Log in

Glucocorticoids modulate the biosynthesis and processing of proThyrotropin releasing-hormone (proTRH)

  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The thyrotropin- (TRH) releasing hormone precursor (26 kDa) undergoes proteolytic cleavage at either of two sites, generating N-terminal 15 kDa/9.5 kDa or C-terminal 16.5/10 kDa intermediate forms that are processed further to yield five copies of TRH-Gly and seven non-TRH peptides. Glucocorticoids (Gcc) have been shown to enhance TRH gene expression in three different cell systems in vitro, an effect that occurs, at least in part, through transcriptional activation. Although this implies that an increase of TRH prohormone biosynthesis would take place, this had not been demonstrated as yet. We report here that the synthetic glucocorticoid dexamethasone (Dex) substantially elevated the de novo biosynthesis of the intact 26-kDa TRH prohormone and its intermediate products of processing in cultured anterior pituitary cells, an observation that is consistent with an overall upregulation of both the biosynthesis and degradation of the TRH precursor. We reasoned that Gcc may act not only at the transcriptional, but also at the translational/posttranslational level. To address this question we chose a different cell system, AtT20 cells transfected with a cDNA encoding preproTRH. Since TRH gene expression in these cells is driven by the CMV-IE promoter and not by an endogenous “physiological” promoter, these cells provide an ideal model to study selectively the effects of Gcc on the translation and posttranslational processing of proTRH without interference from a direct transcriptional activation of the TRH gene. Dex caused a significant 75.7% increase in newly synthesized 26-kDa TRH prohormone, suggesting that the glucocorticoid raised the translation rate. We then demonstrated that Dex treatment accelerated TRH precursor processing. Of interest, processing of the N- vs the C-terminal intermediate was influenced differentially by the glucocorticoid. Although the N-terminal intermediate product of processing accumulated, the C-terminal intermediate was degraded more rapidly. Consistent with these observations was the finding that the intracellular accumulation of the N-terminally derived peptide preproTRH25–50 was enhanced, but levels of the C-terminally derived peptide preproTRH208–255 were reduced. Accumulation of TRH itself, whose five copies are N- and C-terminally derived, was also enhanced.

We conclude that Gcc induce changes in the biosynthesis and processing of proTRH by increasing the translation rate and by differentially influencing the processing of N- vs C-terminal intermediates of the precursor molecule. These effects of Gcc at the translational and posttranslational levels result in an increase in TRH production accompanied by differential effects on the accumulation of N- and C-terminal non-TRH peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lechan, R. M., Wu, P., Jackson, I. M. D., et al. (1986). Science 231, 159–161.

    Article  PubMed  CAS  Google Scholar 

  2. Jackson, I. M. D. (1994). In: The Pituitary Gland, 2nd ed., Imura, H., ed., Raven: New York, pp. 179–216.

    Google Scholar 

  3. Bowers, C. Y., Friesen, H. G., Hwang, P., Guyda, H. J., and Folkers, K. (1971). Biochem. Biophys. Res. Commun. 45, 1033–1041.

    Article  PubMed  CAS  Google Scholar 

  4. Wilber, J. F. and Utiger, R. D. (1967). Proc. Soc. Exp. Biol. Med. 127, 488–490.

    Google Scholar 

  5. Takahara, J., Arimura, A., and Schally, A. V. (1974). Proc. Soc. Exp. Biol. Med. 146, 831–835.

    PubMed  CAS  Google Scholar 

  6. Lechan, R. M. (1993). Thyroid Today 16, 1–11.

    Google Scholar 

  7. Metcalf, G. (1974). Nature 252, 310–311.

    Article  PubMed  CAS  Google Scholar 

  8. Hedner, J., Hedner, T., Jonason, J., and Lundberg, D. (1981). Neurosci. Lett. 24, 317–320.

    Article  Google Scholar 

  9. Sevarino, K. A., Goodman, R. H., Spiess, J., Jackson, I. M., and Wu, P. (1989). J. Biol. Chem. 264, 21,529–21,535.

    CAS  Google Scholar 

  10. Nillni, E. A., Sevarino, K. A., and Jackson, I. M. D. (1993). Endocrinology 132, 1260–1270.

    Article  PubMed  CAS  Google Scholar 

  11. Perez de la Cruz, I. and Nillni, E. A. (1996). J. Biol. Chem. 271, 22,736–22,745.

    CAS  Google Scholar 

  12. Schaner, P., Todd, R. B., Seidah, N. G., and Nillni, E. A. (1997). J. Biol. Chem. 272, 19,958–19,968.

    Article  CAS  Google Scholar 

  13. Beato, M. (1989). Cell 56, 335–344.

    Article  PubMed  CAS  Google Scholar 

  14. Yamamoto, K. R. (1985). Annu. Rev. Genet. 19, 209–252.

    Article  PubMed  CAS  Google Scholar 

  15. O’Malley, B. (1990). Mol. Endocrinol. 4, 364–369.

    Google Scholar 

  16. Wahli, W. and Martinez, E. (1991). FASEB J. 5, 2243–2249.

    PubMed  CAS  Google Scholar 

  17. Barg, J., Rius, R. A., Bem, W. T., Belcheva, M. M., Loh, Y. P., and Coscia, C. J. (1992). Brain Res. Dev. Brain Res. 66, 71–76.

    Article  PubMed  CAS  Google Scholar 

  18. Birnberg, N. C., Lissitzky, J. C., Hinman, M., and Herbert E. (1983). Proc. Natl. Acad. Sci. USA 80, 6982–6986.

    Article  PubMed  CAS  Google Scholar 

  19. Deschepper, C. F. and Flaxman, M. (1990). Endocrinology 126, 963–970.

    PubMed  CAS  Google Scholar 

  20. Kovacs, K. J. and Mezey, E. (1987). Neuroendocrinology 46, 365–368.

    PubMed  CAS  Google Scholar 

  21. Thiele, E. A., Marek, K. L., and Eipper, B. A. (1989). Endocrinology 125, 2279–2288.

    PubMed  CAS  Google Scholar 

  22. Fuller, P. J. (1991). FASEB J. 5, 3092–3099.

    PubMed  CAS  Google Scholar 

  23. Diamond, M. I., Miner, J. N., Yoshinage, S. K., and Yamamoto, K. R. (1990). Science 249, 1266–1272.

    Article  PubMed  CAS  Google Scholar 

  24. Schule, R., Rangarajan, P., Kliewer, S., et al. (1990). Cell 62, 1217–1226.

    Article  PubMed  CAS  Google Scholar 

  25. de Nadai, F., Rovere, C., Bidard, J. N., et al. (1993). Endocrinology 132, 1614–1620.

    Article  PubMed  Google Scholar 

  26. Firestone, G. L., Payvar, F., and Yamamoto, K. R. (1982). Nature 300, 221–225.

    Article  PubMed  CAS  Google Scholar 

  27. Goodman, L. J. and Firestone, G. L. (1993). Mol. Endocrinol. 7, 94–103.

    Article  PubMed  CAS  Google Scholar 

  28. Haffar, O. K., Aponte, G. W., Bravo, D. A., John, N. J., Hess, R. T., and Firestone, G. L. (1988). J. Cell Biol. 106, 1463–1474.

    Article  PubMed  CAS  Google Scholar 

  29. Poyet, P., Henning, S. J., and Rosen, J. M. (1989). Mol. Endocrinol. 3, 1961–1968.

    Article  PubMed  CAS  Google Scholar 

  30. Shields, P. P., Dixon, J. E., and Glembotski, C. C. (1988). J. Biol. Chem. 263, 12,619–12,628.

    CAS  Google Scholar 

  31. Corey, J. L. and Stallcup, M. R. (1992). Mol. Endocrinol. 6, 450–458.

    Article  PubMed  CAS  Google Scholar 

  32. Kain, S. R., Jen, T. I., and Firestone, G. L. (1993). J. Biol. Chem. 268, 19,640–19,649.

    CAS  Google Scholar 

  33. Platt, E. J., Goodman, L. J., Kain, S. R., Zettl, K. S., and Firestone, G. L. (1991). Mol. Endocrinol. 5, 1696–1706.

    PubMed  CAS  Google Scholar 

  34. Luo, L., Bruhn, T. O., and Jackson, I. M. D. (1995). Endocrinology 136, 4945–4950.

    Article  PubMed  CAS  Google Scholar 

  35. Bruhn, T. O., Rondeel, J. M., Bolduc, T. H., and Jackson, I. M. D. (1994). Endocrinology 134, 821–825.

    Article  PubMed  CAS  Google Scholar 

  36. Tavianini, M. A., Gnokos, P. J., Lampe, T. H., and Ross, B. A. (1989). Mol. Endocrinol. 3, 605–610.

    PubMed  CAS  Google Scholar 

  37. Bruhn, T. O., Bolduc, T. G., MacLean, D. B., and Jackson, I. M. D. (1991). Endocrinology 129, 556–558.

    Article  PubMed  CAS  Google Scholar 

  38. Bruhn, T. O., Rondeel, J. M. M., Bolduc, T. G., and Jackson, I. M. D. (1994). Endocrinology 134, 815–820.

    Article  PubMed  CAS  Google Scholar 

  39. Nillni, E. A., Sevarino, K. A., Wu, P., and Jackson, I. M. D. (1991). In: Methods in Neurosciences. Neuropeptide Technology, vol. 6., Conn, P. M., ed., Academic: New York, pp. 51–69.

    Google Scholar 

  40. Chomczynski, P. and Sacchi, N. (1987). Anal. Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  41. Selden, R. (1987). In: Current Protocols in Molecular Biology, Janssen, K., ed., Wiley: New York, pp. 4.9.1–4.9.7.

    Google Scholar 

  42. Nillni, E. A., Friedman, T. C., Todd, R. B., Birch, N. P., Loh, Y. P., and Jackson, I. M. D. (1995). J. Neurochem. 65, 2462–2472.

    Article  PubMed  CAS  Google Scholar 

  43. Schagger, H. and Von Jagow, G. (1987). Annal. Biochem. 166, 368–379.

    Article  CAS  Google Scholar 

  44. Nillni, E. A., Luo, L. G., Jackson, I. M. D., and McMillan, P. (1996). Endocrinology 137, 5651–5661.

    Article  PubMed  CAS  Google Scholar 

  45. Kakucska, I., Qi, Y., and Lechan, R. M. (1995). Endocrinology 136, 2795–2802.

    Article  PubMed  CAS  Google Scholar 

  46. Cintra, A., Fuxe, K., Wilkstrom, A. C., Visser, T., and Gustafsson, J. A. (1990). Brain Res. 506, 139–141.

    Article  PubMed  CAS  Google Scholar 

  47. Lee, S. L., Stewart, K., and Goodman, R. H. (1988). J. Biol. Chem. 263, 16,604–16,609.

    CAS  Google Scholar 

  48. Lee, S. L. and Sevarino, K. A. (1991). Methods Neurosci. 5, 34–44.

    CAS  Google Scholar 

  49. Friedman, T. C., Loh, Y. P., Huang, S. S., Jackson, I. M. D., and Nillni, E. A. (1995). Endocrinology 136, 4462–4472.

    Article  PubMed  CAS  Google Scholar 

  50. Nillni, E. A., Sevarino, K. A., and Jackson, I. M. D. (1993). Endocrinology 132, 1271–1277.

    Article  PubMed  CAS  Google Scholar 

  51. Bloomquist, B. T., Eipper, B. A., and Mains, R. E. (1991). Mol. Endocrinol. 5, 2014–2024.

    PubMed  CAS  Google Scholar 

  52. Day, R., Schafer, M. K.-H., Watson, S. J., Chretien, M., and Seidah, N. G. (1992). Mol. Endocrinol. 6, 485–497.

    Article  PubMed  CAS  Google Scholar 

  53. Nillni, E. A., Verdier, P. A., and Huang, S. H. (1995). Mol. Biol. Cell. 6(Abstract 1926), 331a.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruhn, T.O., Huang, S.S., Vaslet, C. et al. Glucocorticoids modulate the biosynthesis and processing of proThyrotropin releasing-hormone (proTRH). Endocr 9, 143–152 (1998). https://doi.org/10.1385/ENDO:9:2:143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ENDO:9:2:143

Key Words

Navigation