Advertisement

Endocrine

, Volume 29, Issue 2, pp 341–344 | Cite as

Adiponectin and resistin in the neonatal rat

Effects of dexamethasone and hypoxia
Original Articles

Abstract

Hypoxia is a common neonatal stress that induces insulin resistance and a decrease in body weight gain. Dexamethasone is often used to treat neonatal cardiopulmonary disease, and also leads to insulin resistance and a decrease in body weight gain. The current study addressed the hypothesis that serum concentrations of the adipokines adiponectin and/or resistin are altered during hypoxia and/or dexamethasone therapy in neonatal rats. Rat pups with their lactating dams were exposed to hypoxia (11% O2) from birth and treated with a tapering regimen of dexamethasone from postnatal day (PD) 3–6. Serum adiponectin and resistin were measured on PD7. Hypoxia and dexamethasone independently decreased body weight gain and increased adiponectin levels. The combination of hypoxia and dexamethasone did not further increase adiponectin. Dexamethasone caused a small increase in resistin in normoxic pups, which may facilitate the hyperinsulemic-normoglycemic state we previously described. We also conclude that adiponectin is increased during hypoxia in response to a decrease in the sensitivity to insulin.

Key Words

Adiponectin resistin hypoxia rat newborn glucocorticoids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frankel, L. and Stevenson, D. K. (1987). Compreh. Therap. 13, 14–19.Google Scholar
  2. 2.
    Friedman, A. H. and Fahey, J. T. (1993). Semin. Perinatol. 17, 106–121.PubMedGoogle Scholar
  3. 3.
    Low, J. A., Froese, A. B., Galbraith, R. S., Smith, J. T., Sauerberi, E. E., and Derrick, E. J. (1993). Acta Paediatr. 82, 433–437.PubMedGoogle Scholar
  4. 4.
    Thomas, T. and Marshall, J. M. (1995). J. Physiol. 487, 513–525.PubMedGoogle Scholar
  5. 5.
    Perlman, J. M. (2004). Semin. Perinatol. 28, 415–424.PubMedCrossRefGoogle Scholar
  6. 6.
    Low, J. A. (2004). J. Obstet. Gynaecol. Res. 30, 276–286.PubMedCrossRefGoogle Scholar
  7. 7.
    Raff, H., Bruder, E. D., Jankowski, B. M., and Colman, J. (2001). Horm. Metab. Res. 33, 151–155.PubMedCrossRefGoogle Scholar
  8. 8.
    Raff, H., Bruder, E. D., Jankowski, B., Oaks, M. K., and Colman, R. J. (2001). Endocrine 16, 137–141.CrossRefGoogle Scholar
  9. 9.
    Raff, H., Bruder, E. D., and Jankowski, B. M. (1999). Endocrine 11, 37–39.PubMedCrossRefGoogle Scholar
  10. 10.
    Dekelbab, B. H. and Sperling, M. A. (2004). Diabet./Metabol. Res. Rev. 20, 189–195.CrossRefGoogle Scholar
  11. 11.
    Flagel, S. B., Vasquez, D. M., Watson, S. J. and Neal, C. R. (2002). Am. J. Physiol. Integrat. Comp. Physiol. 282, R55-R63.Google Scholar
  12. 12.
    Bruder, E. D., Lee, P. C., and Raff, H. (2004). Endocrinology 145, 5364–5372.PubMedCrossRefGoogle Scholar
  13. 13.
    Stark, A. R., Carlo, W. A., Tyson, J. E., and The National Institute of Child Health Human Development Neonatal Research Network (2001). N. Engl. J. Med. 344, 95–101.PubMedCrossRefGoogle Scholar
  14. 14.
    Bruder, E. D., Lee, P. C., and Raff, H. (2005). J. Appl. Physiol. 98, 981–990.PubMedCrossRefGoogle Scholar
  15. 15.
    Bruder, E. D., Jacobson, L. and Raff, H. (2005). J. Endocrinol. 185, 477–484.PubMedCrossRefGoogle Scholar
  16. 16.
    Kadowaki, T., and Yamauchi, T. (2005). Endocr. Rev. 26, 439–451.PubMedCrossRefGoogle Scholar
  17. 17.
    Yu, Y.-H. and Ginsberg, H. N. (2005). Circ. Res. 96, 1042–1052.PubMedCrossRefGoogle Scholar
  18. 18.
    Banerjee, R. R. and Lazar, M. A. (2003). J. Mol. Med. 81, 218–226.PubMedGoogle Scholar
  19. 19.
    Lihn, A. S., Pedersen, S. B., and Richelsen, B. (2005). Obesity Rev. 6, 13–21.CrossRefGoogle Scholar
  20. 20.
    Ukkola, O. (2002). Eur. J. Endocrinol. 147, 571–574.PubMedCrossRefGoogle Scholar
  21. 21.
    Kanantie, E., Hytinantti, T., Hovi, P., and Andersson, S. (2004). J. Clin. Endocrinol. Metab. 89, 4031–4036.CrossRefGoogle Scholar
  22. 22.
    Kotani, Y., Yokota, J., Kitamura, S., Matsuda, J., Naito, E., and Kuroda, Y. (2004). Clin. Endocrinol. 61, 418–423.CrossRefGoogle Scholar
  23. 23.
    Iniquez, G., Sotoa, N., Avila, A., et al. (2004). J. Clin. Endocrinol. Metab. 89, 5500–5503.CrossRefGoogle Scholar
  24. 24.
    Gregoire, F. M. (2001). Exp. Biol. Med. 226, 997–1002.Google Scholar
  25. 25.
    Lopez-Bermejo, A., Casano-Sancho, P., Fernandez-Real, J. M., et al. (2004). Clin. Endocrinol. 61, 339–346.CrossRefGoogle Scholar
  26. 26.
    Pannacciulli, N., Vettor, R., Milan, G., et al. (2003). J. Clin. Endocrinol. Metab. 88, 1748–1752.PubMedCrossRefGoogle Scholar
  27. 27.
    Monteleone, P., Fabrazzo, M., Martiadis, V., et al. (2003). J. Clin. Endocrinol. Metab. 88, 5387–5391.PubMedCrossRefGoogle Scholar
  28. 28.
    Verhaeghe, J., van Bree, R., van Herck, E., and Coopmans, W. (2005). J. Clin. Endocrinol. Metab. 90, 3449–3453.PubMedCrossRefGoogle Scholar
  29. 29.
    Bruder, E. D., Lee, P. C., and Raff, H. (2004). Am. J. Physiol. Endocrinol. Metab. 288, E314-E320.PubMedCrossRefGoogle Scholar
  30. 30.
    Raff, H. (2002). Endocrine 17, 157–160.PubMedCrossRefGoogle Scholar
  31. 31.
    Raff, H., Jankowski, B. M., Bruder, E. D., Engeland, W. C., and Oaks, M. K. (1999). Endocrinology 140, 3147–3153.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  1. 1.Endocrine Research LaboratorySt. Luke's Medical CenterMilwaukee
  2. 2.Department of MedicineMedical College of WisconsinMilwaukee

Personalised recommendations