Skip to main content
Log in

Tritiated taurine handling by isolated rat pancreatic islets

  • Original Articles
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

A gating of volume-sensitive anion channels may participate in the depolarization of the plasma membrane caused by high concentration of d-glucose in insulin-producing B-cells of the endocrine pancreas. The efflux of tritiated taurine from prelabeled cells is currently used to assess changes in the activity of such channels. The handling of [1,2-3H]taurine by isolated rat pancreatic islets was therefore investigated. The net uptake of [1,2-3H]taurine was found to represent a concentration-, time-, and temperature-dependent process. It was progressively increased in the range of d-glucose concentrations between 2.8 and 8.3 mM, but no further increase was observed at 16.7 mM d-glucose. Over 15 min incubation, the efflux of radioactivity from prelabeled islets was inhibited by MK571 (1.0 mM). It was increased in response to hypoosmolarity both in the presence and absence of extracellular Na+. Whether in salt-balanced or Na+-deprived media, the efflux of radioactivity from prelabeled islets increased in response to a rise in d-glucose concentration from 2.8 to 5.6 or 8.3 mM, but decreased when the concentration of the hexose was further increased from 8.3 to 16.7 mM. In perifused islets, however, the radioactive efflux from prelabeled islets was inhibited, in a concentration-related manner, when islets first deprived of d-glucose for 45 min were then exposed to 2.8, 5.6, or 16.7 mM d-glucose. Likewise, in prelabeled and perifused islets first exposed for 45 min to 4.0 mM d-glucose, a later rise in hexose concentration to 8.3 mM failed to affect significantly effluent radioactivity, while an increase in hexose concentration from 4.0 to 16.7 mM inhibited the radioactive outflow. In these perifusion experiments, the rise in d-glucose concentration provoked the expected changes in insulin output. The findings obtained in islets examined immediately after preincubation in the presence of [1,2-3H]taurine are consistent with the presence of volume-sensitive anion channels in islet cells and with a gating of such channels in response to a rise in d-glucose concentration from 2.8 to 5.6–8.3 mM. However, the radioactive fractional outflow rate from prelabeled islets seems to reach its highest value at about 8.3 mM d-glucose, being unexpectedly decreased at a higher concentration (16.7 mM) of the hexose. In conclusion, the pleiotropic effects of d-glucose upon tritiated taurine outflow from prelabeled rat islets, which could conceivably be ascribed to differences in the handling of this amino sulfonic acid by distinct islet cell types, indicates that the present approach is far from optimal to characterize unambiguously the regulation by the hexose of volume-sensitive anion channel activity in insulin-producing islet cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Malaisse, W. J., Herchuelz, A., and Sener, A. (1981). In: The islets of Langerhans. Biochemistry, physiology, and pathology, Cooperstein, S. J. and Watkins, D. (eds.) Academic Press: New York, pp. 149–171.

    Google Scholar 

  2. Henquin, J. C. (2000). Diabetes 49, 1751–1760.

    Article  PubMed  CAS  Google Scholar 

  3. Carpinelli, A. R. and Malaisse, W. J. (1981). J. Physiol. London 315, 143–156.

    PubMed  CAS  Google Scholar 

  4. Kinard, T. A. and Satin, L. S. (1995). Diabetes 44, 1461–1466.

    Article  PubMed  CAS  Google Scholar 

  5. Best, L., Miley, H. E., and Yates, A. P. (1996) Exp. Physiol. 81, 927–933.

    PubMed  CAS  Google Scholar 

  6. Best, L., Sheader, E. A., and Brown, P. D. (1996). Pflügers Arch. 431, 363–370.

    Article  PubMed  CAS  Google Scholar 

  7. Best, L. (1997) Diabetologia 40, 1–6.

    Article  PubMed  CAS  Google Scholar 

  8. Best, L., Brown, P. D., and Tomlinson, S. (1997). Exp. Physiol. 82, 957–966.

    PubMed  CAS  Google Scholar 

  9. Miley H. E., Sheader, E. A., Brown, P. D., and Best, L. (1997). J. Physiol. 504, 191–198.

    Article  PubMed  CAS  Google Scholar 

  10. Drews, G., Zempel, G., Krippeit-Drews, P., et al. (1998). Biochim. Biophys. Acta. 1370, 8–16.

    Article  PubMed  CAS  Google Scholar 

  11. Best, L. (1999). Biochim. Biophys. Acta. 1419, 248–256.

    Article  PubMed  CAS  Google Scholar 

  12. Best, L. (2000). Biochim. Biophys. Acta 1468, 311–319.

    Article  PubMed  CAS  Google Scholar 

  13. Best, L., Brown, P. D., Sheader, E. A. and Yates, A. P. (2000). J. Membr. Biol. 177, 169–175.

    Article  PubMed  CAS  Google Scholar 

  14. Grant, A. C. G., Thomson, J., Zammit, V. A., and Shennan, D. B. (2000). Mol. Cell. Endocrinol. 162, 203–210.

    Article  PubMed  CAS  Google Scholar 

  15. Best, L., Speake, T., and Brown, P. D. (2001). Exp. Physiol. 86, 145–150.

    Article  PubMed  CAS  Google Scholar 

  16. Best, L. (2002). J. Membr. Biol. 185, 193–200.

    Article  PubMed  CAS  Google Scholar 

  17. Best, L. (2002). Pflügers Arch. 445, 97–104.

    Article  PubMed  CAS  Google Scholar 

  18. Sehlin, J. (1978). Am. J. Physiol. 235, E501-E508.

    PubMed  CAS  Google Scholar 

  19. Malaisse, W. J., Zhang, Y., Louchami, K., and Jijakli, H. (2004). Endocrine 25, 23–25.

    Article  PubMed  CAS  Google Scholar 

  20. Sánchez Olea, R., Pasantes-Morals, H., Lázaro, A., and Cereijido, M. (1991). J. Membr. Biol. 121, 1–9.

    Article  PubMed  Google Scholar 

  21. Roy, G. and Malo, C. (1992). J. Membr. Biol. 130, 83–90.

    PubMed  CAS  Google Scholar 

  22. Banderali, U. and Roy, G. (1992). Am. J. Physiol. 263, C1200-C1207.

    PubMed  CAS  Google Scholar 

  23. Kirk, K. and Strange, K. (1998). Annu. Rev. Physiol. 60, 719–739.

    Article  PubMed  CAS  Google Scholar 

  24. Daïfi, A., Golstein, P., Lebeau, C., Beauwens, R., and Boom, A. (2001). Pflügers Arch. 441, R108 (abstract).

    Google Scholar 

  25. Deleers, M., Lebrun, P., and Malaisse, W. J. (1985). Horm. Metab. Res. 17, 391–395.

    Article  PubMed  CAS  Google Scholar 

  26. Bustamante, J., Lobo, M. V. T., Alonso, F. J., et al. (2001). Am. J. Physiol. 281, E1275-E1285.

    CAS  Google Scholar 

  27. Best, L. and Bennington, S. (1998). Br. J. Pharmacol. 125, 874–878.

    Article  PubMed  CAS  Google Scholar 

  28. Malaisse-Lagae, F. and Malaisse, W. J. (1984). In: Methods in diabetes research. Larner, J. and Pohl, S. L. (eds.) Wiley: New York. pp. 147–152.

    Google Scholar 

  29. Ramirez, R., Courtois, P., Ladrière, L., et al. (2001). Int. J. Mol. Med. 8, 37–42.

    PubMed  CAS  Google Scholar 

  30. Jijakli, H., Ulusoy, S., and Malaisse, W. J. (1996). Pharmacol. Res. 34, 105–108.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy J. Malaisse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jijakli, H., Zhang, Y., Sener, A. et al. Tritiated taurine handling by isolated rat pancreatic islets. Endocr 29, 331–339 (2006). https://doi.org/10.1385/ENDO:29:2:331

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ENDO:29:2:331

Key Words

Navigation