Advertisement

Endocrine

, Volume 28, Issue 3, pp 287–293 | Cite as

Control of ACTH secretion by excitatory amino acids

Functional significance and clinical implications
  • Daniela Jezova
Article

Abstract

The involvement of excitatory amino acids in the control of ACTH release is well established. Activation of ionotropic glutamate receptors has a stimulatory effect on ACTH release, while the role of metabotropic receptors is not yet understood in detail. Glutamatergic regulation of ACTH release has a clear significance for the stress response and neuroendocrine functions during development. A dysregulation of the hypothalamic-pituitary-adrenocortical (HPA) axis has been reported in several psychiatric and neurological disorders. So far, only fractional indices on the clinical importance of the interaction between glutamate and ACTH secretion have been obtained in both preclinical and clinical studies. Some antidepressant drugs, such as tianeptine, which were found to modulate ACTH release, appear to interfere with brain glutamatergic system. Changes in ACTH and cortisol release may be of importance for mood stabilizing effects of antiepileptic drugs modulating glutamate release, such as lamotrigine. Brain glutamate and HPA axis interaction seems to be of importance in alcohol and drug abuse. Little information is available on ACTH release in response to glutamate-modulating drugs used in the treatment of schizophrenia and Alzheimer disease. Nevertheless, pharmacological interventions influencing interaction between glutamate and the HPA axis are promising treatment possibilities in psychiatry and neurology.

Key Words

ACTH cortisol glutamate stress depression drug abuse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Makara, G. B. and Stark, E. (1975). Neuroendocrinology 18, 213–216.PubMedGoogle Scholar
  2. 2.
    Gay, V. L. and Plant, T. M. (1987). Endocrinology 120, 2289–2296.PubMedGoogle Scholar
  3. 3.
    Farah, J. M. Jr., Rao, T. S., Mick, S. J., Coyne, K. E., and Iyengar, S. (1991). Endocrinology 128, 1875–1880.PubMedGoogle Scholar
  4. 4.
    Jezova, D., Oliver, C., and Jurcovicova, J. (1991). Neuroendocrinology 54, 488–492.PubMedGoogle Scholar
  5. 5.
    Yousef, K. A., Tepper, P. G., Molina, P. E., Abumrad, N. N., and Lang, C. H. (1994). Brain Res. 634, 131–140.PubMedCrossRefGoogle Scholar
  6. 6.
    Pechnick, R. N., George, R., and Poland, R. E. (1989). Eur. J. Pharmacol. 164, 257–263.PubMedCrossRefGoogle Scholar
  7. 7.
    Jezova, D., Tokarev, D., and Rusnak, M. (1995). Neuroendocrinology 62, 326–332.PubMedGoogle Scholar
  8. 8.
    Pechnick, R. N. and Poland, R. E. (2004). J. Pharmacol. Exp. Ther. 309, 515–522.PubMedCrossRefGoogle Scholar
  9. 9.
    Tokarev, D. and Jezova, D. (1997). Methods Find. Exp. Clin. Pharmacol. 19, 323–328.PubMedGoogle Scholar
  10. 10.
    Zelena, D., Makara, G. B., and Jezova, D. (1999). Neuroendocrinology 69, 316–323.PubMedCrossRefGoogle Scholar
  11. 11.
    Broadbear, J. H., Winger, G., and Woods, J. H. (2004). Psychopharmacology (Berlin) 176, 398–406.CrossRefGoogle Scholar
  12. 12.
    Lang, C. H. and Ajmal, M. (1995). Am. J. Physiol. 268, R1026-R1033.PubMedGoogle Scholar
  13. 13.
    Johnson, M. P., Kelly, G., and Chamberlain, M. (2001). J. Neuroendocrinol. 13, 670–677.PubMedCrossRefGoogle Scholar
  14. 14.
    Scaccianoce, S., Matrisciano, F., Del Bianco, P., et al. (2003). Neuropharmacology 44, 555–561.PubMedCrossRefGoogle Scholar
  15. 15.
    Bradbury, M. J., Giracello, D. R., Chapman, D. F., et al. (2003). Neuropharmacology 44, 562–572.PubMedCrossRefGoogle Scholar
  16. 16.
    Aubry, J. M., Bartanusz, V., Pagliusi, S., Schulz, P., and Kiss, J. Z. (1996). Neurosci. Lett. 205, 95–98.PubMedCrossRefGoogle Scholar
  17. 17.
    Herman, J. P., Eyigor, O., Ziegler, D. R., and Jennes, L. (2000). J. Comp. Neurol. 422, 352–362.PubMedCrossRefGoogle Scholar
  18. 18.
    Kocsis, K., Kiss, J., Gorcs, T., and Halasz, B. (1998). Neuroreport 9, 4029–4033.PubMedCrossRefGoogle Scholar
  19. 19.
    Herman, J. P., Mueller, N. K., and Figueiredo, H. (2004). Ann. NY Acad. Sci. 1018, 35–45.PubMedCrossRefGoogle Scholar
  20. 20.
    Hrabovszky, E., Wittmann, G., Turi, G. F., Liposits, Z., and Fekete, C. (2005). Endocrinology 146, 341–347.PubMedCrossRefGoogle Scholar
  21. 21.
    Joanny, P., Steinberg, J., Oliver, C., and Grino, M. (1997). J. Neuroendocrinol. 9, 93–97.PubMedCrossRefGoogle Scholar
  22. 22.
    Zelena, D., Mergl, Z., and Makara, G. B. (2005). Brain Res. 1031, 185–193.PubMedCrossRefGoogle Scholar
  23. 23.
    Jezova, D., Vigas, M., Bartanusz, V., Reymond, M. J., and Zorad, S. (1996). In: Stress: molecular genetic and neurobiological advances. McCarty, R., Aguilera, G., Sabban, E., and Kvetnansky R. (eds.). Gordon and Breach Science Publishers: New York, pp. 417–430.Google Scholar
  24. 24.
    Jezova, D. and Schwendt, M. (2005). In: Glutamate receptors in peripheral tissue: excitatory transmission outside the CNS. Gill, S. and Pulido O. (eds.). Kluwer Academic/Plenum Publishers: New York, pp. 169–178.CrossRefGoogle Scholar
  25. 25.
    Lowy, M. T., Gault, L., and Yamamoto, B. K. (1993). J. Neurochem. 61, 1957–1960.PubMedCrossRefGoogle Scholar
  26. 26.
    Moghaddam, B. (1993). J. Neurochem. 60, 1650–1657.PubMedCrossRefGoogle Scholar
  27. 27.
    Bartanusz, V., Aubry, J. M., Pagliusi, S., Jezova, D., Baffi, J., and Kiss, J. Z. (1995). Neuroscience 66, 247–252.PubMedCrossRefGoogle Scholar
  28. 28.
    Fitzgerald, L. W., Ortiz, J., Hamedani, A. G., and Nestler, E. J. (1996). J. Neurosci. 16, 274–282.PubMedGoogle Scholar
  29. 29.
    Schwendt, M. and Jezova, D. (2000). Cell. Mol. Neurobiol. 20, 319–329.PubMedCrossRefGoogle Scholar
  30. 30.
    Akinbami, M. A., Philip, G. H., Sridaran, R., Mahesh, V. B., and Mann, D. R. (1999). J. Steroid Biochem. Mol. Biol. 70, 143–149.PubMedCrossRefGoogle Scholar
  31. 31.
    Reagan, L. P., Rosell, D. R., Wood, G. E., et al. (2004). Proc. Natl. Acad. Sci. USA 101, 2179–2184.PubMedCrossRefGoogle Scholar
  32. 32.
    Boudouresque, F., Chautard, T., Jezova, D., et al. (1991). Endocr. Regul. 25, 44–52.PubMedGoogle Scholar
  33. 33.
    Skultetyova, I., Tokarev, D. I., and Jezova, D. (1993). Endocr. Regul. 27, 209–213.PubMedGoogle Scholar
  34. 34.
    Olney, J. W. (1969). Science 164, 719–721.PubMedCrossRefGoogle Scholar
  35. 35.
    Skultetyova, I., Kiss, A., and Jezova, D. (1998). Neuroendocrinology 67, 412–420.PubMedCrossRefGoogle Scholar
  36. 36.
    Leret, M. L., Peinado, V., Suarez, L. M., Tecedor, L., Gamallo, A., and Gonzalez, J. C. (2004). Int. J. Dev. Neurosci. 22, 87–93.PubMedCrossRefGoogle Scholar
  37. 37.
    Chautard, T., Boudouresque, F., Guillaume, V., and Oliver, C. (1993). Neuroendocrinology 57, 70–78.PubMedGoogle Scholar
  38. 38.
    Kent, S., Kernahan, S. D., and Levine, S. (1996). Brain Res. Dev. Brain Res. 94, 1–13.PubMedCrossRefGoogle Scholar
  39. 39.
    Jezova, D., Kiss, A., Tokarev, D., and Skultetyova, I. (1998). Stress Med. 14, 255–260.CrossRefGoogle Scholar
  40. 40.
    Makatsori, A., Dubovicky, M., Ujhazy, E., Bakos, J., and Jezova, D. (2005). Neurotoxicol. Teratol. 27, 509–514.PubMedCrossRefGoogle Scholar
  41. 41.
    Jezova, D., Skultetyova, I., Makatsori, A., Moncek, F., and Duncko, R. (2002). Stress 5, 177–183.PubMedCrossRefGoogle Scholar
  42. 42.
    Bakos, J., Duncko, R., Makatsori, A., Pirnik, Z., Kiss, A., and Jezova, D. (2004). Ann. NY Acad. Sci. 1018, 281–287.PubMedCrossRefGoogle Scholar
  43. 43.
    Kendell, S. F., Krystal, J. H., and Sanacora, G. (2005). Expert. Opin. Ther. Targets 9, 153–168.PubMedCrossRefGoogle Scholar
  44. 44.
    Tichomirowa, M. A., Keck, M. E., Schneider, H. J., et al. (2005). J. Endocrinol. Invest. 28, 89–99.PubMedGoogle Scholar
  45. 45.
    Stahl, S. M. and Grady, M. M. (2003). J. Clin. Psychiatry 64 (Suppl. 13), 13–17.PubMedGoogle Scholar
  46. 46.
    Duncko, R., Schwendt, M., and Jezova, D. (2003). Pharmacol. Biochem. Behav. 76, 9–16.PubMedCrossRefGoogle Scholar
  47. 47.
    Strohle, A. and Holsboer, F. (2003). Pharmacopsychiatry 36 (Suppl. 3), S207-S214.PubMedGoogle Scholar
  48. 48.
    Reid, I. C. and Stewart, C. A. (2004). Neurotox. Res. 6, 483–489.PubMedCrossRefGoogle Scholar
  49. 49.
    McEwen, B. S. and Olie, J. P. (2005). Mol. Psychiatry 10, 525–537.PubMedCrossRefGoogle Scholar
  50. 50.
    Delbende, C., Tranchand, B. D., Tarozzo, G., et al. (1994). Eur. J. Pharmacol. 251, 245–251.PubMedCrossRefGoogle Scholar
  51. 51.
    Jezova, D. and Duncko, R. (2002). J. Psychopharmacol. 16, 235–240.PubMedGoogle Scholar
  52. 52.
    Du, J., Gray, N. A., Falke, C. A., et al. (2004). J. Neurosci. 24, 6578–6589.PubMedCrossRefGoogle Scholar
  53. 53.
    Zarate, C. A. Jr., Quiroz, J. A., Singh, J. B., et al. (2005). Biol. Psychiatry 57, 430–432.PubMedCrossRefGoogle Scholar
  54. 54.
    Kniest, A., Wiesenberg, C., Weber, B., Colla, M., Heuser, I., and Deuschle, M. (2001). Neuropsychobiology 43, 91–95.PubMedCrossRefGoogle Scholar
  55. 55.
    Makatsori, A., Duncko, R., Moncek, F., Loder, I., Katina, S., and Jezova, D. (2004). Neuroendocrinology 79, 34–42.PubMedCrossRefGoogle Scholar
  56. 56.
    Pistovcakova, J., Makatsori, A., Sulcova, A., and Jezova, D. (2005). Eur. Neuropsychopharmacol. 15, 153–158.PubMedCrossRefGoogle Scholar
  57. 57.
    Tzschentke, T. M. and Schmidt, W. J. (2003). Mol. Psychiatry 8, 373–382.PubMedCrossRefGoogle Scholar
  58. 58.
    Schmidt, E. D., Tilders, F. J., Janszen, A. W., Binnekade, R., De Vries, T. J., and Schoffelmeer, A. N. (1995). Eur. J. Pharmacol. 285, 317–321.PubMedCrossRefGoogle Scholar
  59. 59.
    Jezova, D., Mlynarik, M., Zelena, D., and Makara, G. B. (2004). Brain Res. 1021, 63–68.PubMedCrossRefGoogle Scholar
  60. 60.
    Kim, J. H., Austin, J. D., Tanabe, L., Creekmore, E., and Vezina, P. (2005). Eur. J. Neurosci. 21, 295–300.PubMedCrossRefGoogle Scholar
  61. 61.
    Torres, G., Rivier, C., and Weiss, F. (1994). Brain Res. 656, 33–42.PubMedCrossRefGoogle Scholar
  62. 62.
    Makatsori, A., Duncko, R., Schwendt, M., Moncek, F., Johansson, B. B., and Jezova, D. (2003). Psychoneuroendocrinology 28, 702–714.PubMedCrossRefGoogle Scholar
  63. 63.
    Schwendt, M., Duncko, R., Makatsori, A., Moncek, F., Johansson, B. B., and Jezova, D. (2003). Neurochem. Res. 28, 653–657.PubMedCrossRefGoogle Scholar
  64. 64.
    Nakagawa, T. and Satoh, M. (2004). Ann. NY Acad. Sci. 1025, 383–388.PubMedCrossRefGoogle Scholar
  65. 65.
    Le Greves, P., Huang, W., Zhou, Q., Thornwall, M., and Nyberg, F. (1998). Eur. J. Pharmacol. 341, 161–164.PubMedCrossRefGoogle Scholar
  66. 66.
    Zhu, H., Jang, C. G., Ma, T., Oh, S., Rockhold, R. W., and Ho, I. K. (1999). Eur. J. Pharmacol. 365, 47–54.PubMedCrossRefGoogle Scholar
  67. 67.
    Pirnik, Z., Schwendt, M., and Jezova, D. (2001). Endocr. Regul. 35, 187–193.PubMedGoogle Scholar
  68. 68.
    Nagy, J. (2004). Drugs 7, 339–350.Google Scholar
  69. 69.
    Scott, L. J., Figgitt, D. P., Keam, S. J., and Waugh, J. (2005). CNS Drugs 19, 445–464.PubMedCrossRefGoogle Scholar
  70. 70.
    Zimmerman, U., Spring, K., Koller, G., Holsboer, F., and Soyka, M. (2004). Pharmacopsychiatry 37, 98–102.PubMedGoogle Scholar
  71. 71.
    Elman, I., Lukas, S. E., Karlsgodt, K. H., Gasic, G. P., and Breiter, H. C. (2003). Psychopharmacol. Bull. 37, 84–89.PubMedGoogle Scholar
  72. 72.
    McCullumsmith, R. E., Clinton, S. M., and Meador-Woodruff, J. H. (2004). Int. Rev. Neurobiol. 59, 19–45.PubMedCrossRefGoogle Scholar
  73. 73.
    Javitt, D. C. (2004). Mol. Psychiatry 9, 984–997.PubMedCrossRefGoogle Scholar
  74. 74.
    Zhang, X. Y., Zhou, D. F., Cao, L. Y., Wu, G. Y., and Shen, H. C. (2005). Neuropsychopharmacology 30, 1532–1538.PubMedCrossRefGoogle Scholar
  75. 75.
    Altamura, A. C., Boin, F., and Maes, M. (1999). Eur. Neuropsychopharmacol. 10, 1–4.PubMedCrossRefGoogle Scholar
  76. 76.
    Hynd, M. R., Scott, H. L., and Dodd, P. R. (2004). Neurochem. Int. 45, 583–595.PubMedCrossRefGoogle Scholar
  77. 77.
    Farlow, M. R. (2004). Geriatrics 59, 22–27.PubMedGoogle Scholar
  78. 78.
    Pascualy, M., Petrie, E. C., Brodkin, K., Peskind, E. R., Wilkinson, C. W., and Raskind, M. A. (2000). Biol. Psychiatry 48, 247–254.PubMedCrossRefGoogle Scholar
  79. 79.
    Zhou, Y., Yuferov, V. P., Spangler, R., Maggos, C. E., Ho, A., and Kreek, M. J. (1998). Eur. J. Pharmacol. 352, 65–71.PubMedGoogle Scholar
  80. 80.
    Hergovich, N., Singer, E., Agneter, E., et al. (2001). Neuropsychopharmacology 24, 590–593.PubMedCrossRefGoogle Scholar
  81. 81.
    Murck, H., Struttmann, T., Czisch, M., Wetter, T., Steiger, A., and Auer, D. P. (2002). Neuropsychobiology 45, 120–123.PubMedCrossRefGoogle Scholar
  82. 82.
    van Berckel, B. N., Lipsch, C., Gispen-de Wied, C., et al. (1998). Psychopharmacology (Berlin) 138, 190–197.CrossRefGoogle Scholar
  83. 83.
    Deuster, P. A., Faraday, M. M., Chrousos, G. P., and Poth, M. A. (2005). J. Clin. Endocrinol. Metab. 90, 4777–4783.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  1. 1.Laboratory of Pharmacological Neuroendocrinology, Institute of Experimental EndocrinologySlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations