, Volume 27, Issue 1, pp 55–61 | Cite as

Hunger-satiety signals in patients with Graves’ thyrotoxicosis before, during, and after long-term pharmacological treatment

  • Sven Röjdmark
  • Jan Calissendorff
  • Olle Danielsson
  • Kerstin Brismar
Original Articles


Patients with Graves’ thyrotoxicosis lose weight despite increased appetite and food intake, thus suggesting a disturbed balance between energy intake and expenditure. Underlying mechanisms are not fully elucidated. The objective of this study was to investigate whether hormonal factors, known to affect hunger/satiety, change significantly over time as pharmacological treatment turns hyperthyroidism into euthyroidism. For that purpose 11 patients with Graves’ thyrotoxicosis were given thiamazole and I-thyroxine for 18–20 mo. They were investigated on three occasions: Test 1: before pharmacological therapy; Test 2: during medication; Test 3: a few months after conclusion of the pharmacological treatment. Sixteen healthy subjects were also investigated for comparison. The participants were fasted overnight. Blood samples for determination of plasma glucose and serum concentrations of free T3 and T4, TSH, albumin, cortisol, insulin, GH, IGF-1, IGFBP-1, leptin, and ghrelin were drawn in the morning from an antecubital vein. Laboratory data obtained in test 1 were statistically compared with those in tests 2 and 3. The study showed that the free T3 level declined from 42.8±4.3 pmol/L in test 1 to 6.0±0.8 pmol/L in test 2 (85±2% decline), and 5.5±0.3 pmol/L in test 3 (86±2% decline). The free T4 level fell concomitantly from 65.2±4.8 to 16.6±1.7 and 14.4±1.2 pmol/L. The glucose level was significantly higher during hyperthyroidism (test 1) than during euthyroidism (tests 2 and 3), whereas cortisol, insulin, GH, IGF-1, and leptin levels were similar. The IGFBP-1 level was initially high (48.8±8.5 µg/L in test 1), but with a relative decline in free T3 of 85±2% (test 2) the IGFBP-1 level declined by 34±13%, and with a free T3 decline of 86±2% (test 3) the binding protein fell by 39±29%. This brought about increased IGF-1 bioavailability as reflected by a rising IGF-1/IGFBP-1 ratio from 5.1±1.1 to 13.8±2.9 (p<0.01). The ghrelin level was low (2454±304 ng/L) in test 1. It increased to 3127±397 ng/L in test 2 (p<0.05), and to 3348±279 ng/L in test 3 (p<0.01). Conclusion: Both ghrelin secretion and IGF-1 bioavailability are low in patients with untreated thyrotoxicosis, but increase markedly as pharmacotherapy makes them euthyroid. These metabolic changes may be caused by the transition of hyperthyroidism into euthyroidism rather than by the pharmacotherapy per se, since the metabolic changes prevailed also in the posttreatment period.

Key Words

Hyperthyroidism ghrelin leptin IGF-1 IGFBP-1 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ingbar, S. H. (1985). In: Textbook of endocrinology. Wilson, J. D. and Foster, D. W. (eds.). Saunders: Philadelphia, PA.Google Scholar
  2. 2.
    Havel, P. J. (2001). Exp. Biol. Med. 226, 963–977.Google Scholar
  3. 3.
    Weigle, D. S., Bukowski, T., Foster, D., et al. (1995). J. Clin. Invest. 96, 2065–2070.PubMedGoogle Scholar
  4. 4.
    Rink, T. J. (1995). Nature 372, 406–407.CrossRefGoogle Scholar
  5. 5.
    Romon, M., Lebel, P., Velly, C., Marecaux, N., Fruchart, J. C., and Dallongeville, J. (1999). Am. J. Physiol. 277, E855-E861.PubMedGoogle Scholar
  6. 6.
    Stephens, T. W., Basinski, M., Bristow, P. K., et al. (1995). Nature 377, 530–532.PubMedCrossRefGoogle Scholar
  7. 7.
    Rohner-Jeanrenaud, F. and Jeanrenaud, B. (1996). N. Engl. J. Med. 334, 324–325.PubMedCrossRefGoogle Scholar
  8. 8.
    Flood, J. F. and Morley, J. E. (1991). Peptides 12, 1329–1332.PubMedCrossRefGoogle Scholar
  9. 9.
    Boden, G., Cheu, X., Kolaczynski, J. W., and Polansky, M. (1997). J. Clin. Invest. 100, 1107–1113.PubMedGoogle Scholar
  10. 10.
    Elimam, A., Knutsson, U., Brönnegård, M., Stierna, P., Albertsson-Wikland, K., and Marcus, C. (1998). Eur. J. Endocrinol. 139, 615–620.PubMedCrossRefGoogle Scholar
  11. 11.
    Nakazato, M., Murakami, N., Date, Y., et al. (2001). Nature 409, 194–198.PubMedCrossRefGoogle Scholar
  12. 12.
    Wren, A. M., Seal, L. J., Cohen, M. A., et al. (2001). J. Clin. Endocrinol. Metab. 86, 5992–5995.PubMedCrossRefGoogle Scholar
  13. 13.
    Shintani, M., Ogawa, Y., Ebihara, K., et al. (2001). Diabetes 50, 227–232.PubMedCrossRefGoogle Scholar
  14. 14.
    Otto, B., Cuntz, U., Fruehauf, E., et al. (2001). Eur. J. Endocrinol. 145, 669–673.PubMedCrossRefGoogle Scholar
  15. 15.
    Tschöp, M., Weyer, C., Tataranni, P. A., Devanarayan, V., Ravussin, E., and Heiman, M. L. (2001). Diabetes 50, 707–709.PubMedCrossRefGoogle Scholar
  16. 16.
    Riis, A. L. D., Hansen, T. K., Møller, N., Weeke, J., and Jørgensen, J. O. L. (2003). J. Clin. Endocrinol. Metab. 88, 853–857.PubMedCrossRefGoogle Scholar
  17. 17.
    Kojima, M., Hosoda, H., Date, Y., Nakazato, M., Matsuo, H., and Kangawa, K. (1999). Nature 402, 656–660.PubMedCrossRefGoogle Scholar
  18. 18.
    Maffei, M., Halaas, J., Ravussin, E., et al. (1995). Nat. Med. 1, 1155–1161.PubMedCrossRefGoogle Scholar
  19. 19.
    Considine, R. V., Sinha, M. K., Heiman, M. L., et al. (1996). N. Engl. J. Med. 334, 292–295.PubMedCrossRefGoogle Scholar
  20. 20.
    Grinspoon, S., Gulick, T., Askari, H., et al. (1996). J. Clin. Endocrinol. Metab. 81, 3861–3863.PubMedCrossRefGoogle Scholar
  21. 21.
    Valcavi, R., Zini, M., Peino, R., Casanueva, F. F., and Dieguez, C. (1997). J. Clin. Endocrinol. Metab. 82, 632–634.CrossRefGoogle Scholar
  22. 22.
    Mantzoros, C. S., Rosen, H. N., Greenspan, S. L., Flier, J. S., and Moses, A. C. (1997). J. Clin. Endocrinol. Metab. 82, 497–499.PubMedCrossRefGoogle Scholar
  23. 23.
    Yaturu, S., Prado, S., and Grimes, S. R. (2004). J. Cell Biochem. 93, 491–496.PubMedCrossRefGoogle Scholar
  24. 24.
    Nogueiras, R., Gualillo, O., Caminos, J. E., Casanueva, F. F., and Dieguez, C. (2003). Obes. Res. 11, 408–414.PubMedCrossRefGoogle Scholar
  25. 25.
    Iglesias, P., Alvarez Fidalgo, P., Codoceo, R., and Diez, J. J. (2003). Clin. Endocrinol. (Oxf.) 59, 621–629.CrossRefGoogle Scholar
  26. 26.
    Sanfini, F., Marsili, A., Mammoli, C., et al. (2004). J. Endocrinol. Invest. 27, RC5–7.Google Scholar
  27. 27.
    Schultes, B., Oltmanns, K. M., Kern, W., Fehm, H. L., Born, J., and Peters, A. (2003). J. Clin. Endocrinol. Metab. 88, 1133–1141.PubMedCrossRefGoogle Scholar
  28. 28.
    Lee, P. D. K., Conover, C. A., and Powell, D. R. (1993). Proc. Soc. Exp. Biol. Med. 204, 4–29.PubMedGoogle Scholar
  29. 29.
    Guler, H.-P., Zapf, J., and Froesch, E. R. (1987). N. Engl. J. Med. 317, 137–140.PubMedCrossRefGoogle Scholar
  30. 30.
    Röjdmark, S., Rydvald, Y., Aquilonius, A., and Brismar, K. (2000). Clin. Endocrinol. 52, 313–318.CrossRefGoogle Scholar
  31. 31.
    Amino, N., Yabu, Y., Miki, T., et al. (1981). J. Clin. Endocrinol. Metab. 53, 113–116.PubMedCrossRefGoogle Scholar
  32. 32.
    Bannai, C., Yamashita, K., Kugai, N., Koide, Y., and Akisada, M. (1985). Horm. Metab. Res. 17, 671–673.PubMedGoogle Scholar
  33. 33.
    Colebunders, R., Bourdoux, P., Beckaert, J., Mahler, C., and Parizel, G. (1984). J. Endocrinol. Invest. 7, 379–381.PubMedGoogle Scholar
  34. 34.
    Ford, H. C., Crooke, M. J., and Murphy, C. E. (1989). Clin. Biochem. 22, 373–376.PubMedCrossRefGoogle Scholar
  35. 35.
    Bambini, G., Aghini-Lombardi, F., Rosner, W., et al. (1987). Arch. Intern. Med. 147, 1781–1785.PubMedCrossRefGoogle Scholar
  36. 36.
    Bilezikian, J. P. and Loeb, J. N. (1983). End. Rev. 4, 378–388.Google Scholar
  37. 37.
    Silva, J. E. (1995). Thyroid 5, 481–492.PubMedCrossRefGoogle Scholar
  38. 38.
    Bang, P., Eriksson, U., Sara, V., Wivall, I.-L., and Hall, K. (1991). Acta Endocrinol. 124, 620–629.PubMedGoogle Scholar
  39. 39.
    Póvoa, G., Roovete, A., and Hall, K. (1984). Acta Endocrinol. 107, 563–570.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Sven Röjdmark
    • 1
  • Jan Calissendorff
    • 2
  • Olle Danielsson
    • 3
  • Kerstin Brismar
    • 2
  1. 1.Karolinska Institute, Department of Medicine, Section of EndocrinologyStockholm Söder HospitalStockholmSweden
  2. 2.Department of Endocrinology and DiabetologyKarolinska Institute, Karolinska University HospitalStockholm
  3. 3.Department of Clinical ChemistryKarolinska Institute, Karolinska University HospitalStockholmSweden

Personalised recommendations