Advertisement

Endocrine

, Volume 26, Issue 2, pp 117–125 | Cite as

IGF-I and postnatal growth of weaver mutant mice

  • Weiguo Yao
  • Jin Zhong
  • Clifford J. Rosen
  • Janet M. Hock
  • Wei-Hua Lee
Original Articles

Abstract

IGF-I is an anabolic growth factor essential for growth and development, both as a mediator of growth hormone (GH) action and as a local stimulator of cell proliferation and differentiation. Although the importance of IGF-I in postnatal growth has been studied for several decades, its functions in pathological states are not fully understood. The weaver (wv) mutant mouse is a commonly used model for studying hereditary cerebellar ataxia and provides us with an opportunity to study the function of IGF-I in postnatal growth during neurodegeneration. In prepubertal wv mice, we found a parallel decrease in body weight and serum IGF-I. This parallel relationship was maintained in females, but not in males, as wv mice entered puberty. Interestingly, we found an increase in the levels of circulating IGF-I and hepatic mRNA preceded the catch-up of body weight of pubertal male wv mice. The increase in IGF-I levels coincided with a surge of circulating androgen at the onset of male puberty, suggesting that androgen might trigger the increase in IGF-I production in the pubertal and adult male wv mice. Overall, our results support the concept that IGF-I plays an important role in postnatal growth during and after neurodegeneration of wv mice. In addition, IGF-I’s regulation of systemic growth during and after puberty is likely modulated by androgen in male wv mice.

Key Words

IGF-I weaver mice growth puberty 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liu, J.-P., Baker, J., Perkins, A. S., Robertson, E. J., and Efstratiadis, A. (1993). Cell 75, 59–72.PubMedGoogle Scholar
  2. 2.
    Baker, J., Liu, J.-P., Robertson, E. J., and Efstratiadis, A. (1993). Cell 75, 73–82.PubMedGoogle Scholar
  3. 3.
    Mathews, L. S., Hammer, R. E., Brinster, R. L., and Palmiter, R. D. (1988). Endocrinology 123, 433–437.PubMedCrossRefGoogle Scholar
  4. 4.
    Mathews, L. S., Hammer, R. E., Behringer, R. R., et al. (1988). Endocrinology 123, 2827–2833.PubMedGoogle Scholar
  5. 5.
    Coschigano, K. T., Holland, A. N., Riders, M. E., List, E. O., Flyvbjerg, A., and Kopchick, J. J. (2003). Endocrinology 144, 3799–3810.PubMedCrossRefGoogle Scholar
  6. 6.
    Palmiter, R. D., Brinster, R. L., Hammer, R. E., et al. (1982). Nature 300, 611–615.PubMedCrossRefGoogle Scholar
  7. 7.
    Palmiter, R. D., Norstedt, G., Gelinas, R. E., Hammer, R. E., and Brinster, R. L. (1983). Science 222, 809–814.PubMedCrossRefGoogle Scholar
  8. 8.
    D’Ercole, A. J., Ye, P., Calikoglu, A. S., and Gutierrez-Ospina, G. (1996). Mol. Neurobiol. 13, 227–255.PubMedGoogle Scholar
  9. 9.
    Rakic, P. and Sidman, R. L. (1973). Proc. Natl. Acad. Sci. USA 70, 240–244.PubMedCrossRefGoogle Scholar
  10. 10.
    Smeyne, R. J. and Goldowitz, D. (1989). J. Neurosci. 9, 1608–1620.PubMedGoogle Scholar
  11. 11.
    Lee, W.-H., Wang, G.-M., Lo, T., Triarhou, L. C., and Ghetti, B. (1995). Brain Res. Mol. Brain Res. 30, 259–268.PubMedCrossRefGoogle Scholar
  12. 12.
    Zhong, J., Deng, J., Ghetti, B., and Lee, W.-H. (2002). J. Neurosci. Res. 70, 36–45.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang, W., Ghetti, B., and Lee, W.-H. (1997). Brain Res. Dev. Brain Res. 98, 164–176.PubMedCrossRefGoogle Scholar
  14. 14.
    Ghetti, B., Alyea, C. J., and Muller, J. (1978). J. Neuropathol. Exp. Neurol. 37, 617.CrossRefGoogle Scholar
  15. 15.
    Torres-Aleman, I. (2000). Mol. Neurobiol. 21, 153–160.PubMedCrossRefGoogle Scholar
  16. 16.
    Busiguina, S., Fernanadez, S. C., Barrios, V., et al. (2000). Neurobiol. Dis. 7, 657–665.PubMedCrossRefGoogle Scholar
  17. 17.
    Fernandez, A. M., De la Vega, A. G., and Torres-Aleman, I. (1998). Proc. Natl. Acad. Sci. USA 95, 1253–1258.PubMedCrossRefGoogle Scholar
  18. 18.
    Clemmons, D. R. (1998). Mol. Cellular Endocrinol. 140, 19–24.CrossRefGoogle Scholar
  19. 19.
    Hossenlopp, P., Seurin, D., Segovia-Quinson, B., Hardouin, S., and Binoux, M. (1986). Anal. Biochem. 154, 138–143.PubMedCrossRefGoogle Scholar
  20. 20.
    Lane, P. W. (1964). Mouse News Lett. 30, 32.Google Scholar
  21. 21.
    Sidman, R. L., Green, M. C., and Appel, S. H. (1965). Catalog the neurological mutants of the mouse. Harvard University Press, Cambridge, MA.Google Scholar
  22. 22.
    Caviness, V. S. and Rakic, P. (1978). Ann. Rev. Neurosci. 1, 297–326.PubMedCrossRefGoogle Scholar
  23. 23.
    Sekiguchi, M., Nowakowski, R. S., Nagato, Y., et al. (1995). Brain Res. 629, 262–267.CrossRefGoogle Scholar
  24. 24.
    Roffler-Tarlov, S., Martin, B., Graybiel, A. M., and Kauer, J. S. (1996). J. Neurosci. 16, 1819–1826.PubMedGoogle Scholar
  25. 25.
    Mauras, N., Rogol, A. D., Haymond, M. W., and Veldhuis, J. D. (1996). Horm. Res. 45, 74–80.PubMedCrossRefGoogle Scholar
  26. 26.
    Metzger, D. L. and Kerrigan, J. R. (1994). J. Clin. Endocrinol. Metab. 79, 513–518.PubMedCrossRefGoogle Scholar
  27. 27.
    Schwartz, N. B., Szabo, M., Verina, T., et al. (1999). Neuroendocrinology 68, 374–385.CrossRefGoogle Scholar
  28. 28.
    Brinkmann, A. O., Blok, L. J., de Ruiter, P. E., et al. (1999). J. Steroid Biochem. Mol. Biol. 69, 307–313.PubMedCrossRefGoogle Scholar
  29. 29.
    Weissberger, A. J. and Ho, K. Y. (1993). J. Clin. Endocrinol. Metab. 76, 1407–1412.PubMedCrossRefGoogle Scholar
  30. 30.
    Urban, R. J., Bodenburg, Y. H., Gilkison, C., et al. (1995). Am. J. Physiol. Endocrinol. Metab. 269, E820-E826.Google Scholar
  31. 31.
    Metzger, D. L. and Rogol, A. D. (1994). Proc. 76th Annu Meeting Endocr Soc, Anaheim, CA, abstract 522.Google Scholar
  32. 32.
    Veldhuis, J. D., Metzger, D. L., Martha, P. M. J., et al. (1997). J. Clin. Endocrinol. Metab. 82, 3414–3420.PubMedCrossRefGoogle Scholar
  33. 33.
    Mauras, N. and Beaufrere, B. (1995). J. Clin. Endocrinol. Metab. 80, 869–874.PubMedCrossRefGoogle Scholar
  34. 34.
    LeRoith, D., Scavo, L., and Butler, A. (2001). Trends Endocrinol. Metabol. 12, 48–52.CrossRefGoogle Scholar
  35. 35.
    Baxter, R. C. (2000). Am. J. Physiol. (Endocrinol. Metab.) 278, E967-E976.Google Scholar
  36. 36.
    Jones, J. I. and Clemmons, D. R. (1995). Endo. Rev. 16, 3–34.CrossRefGoogle Scholar
  37. 37.
    Liu, J. L., Yakar, S., and LeRoith, D. (2000). Proc. Soc. Exp. Biol. Med. 223, 344–351.PubMedCrossRefGoogle Scholar
  38. 38.
    Liu, J. L., Yakar, S., and LeRoith, D. (2000). Endocrinology 141, 4436–4441.PubMedCrossRefGoogle Scholar
  39. 39.
    Yakar, S., Liu, J. L., Stannard, B., et al. (1999). Proc. Natl. Acad. Sci. USA 96, 7324–7329.PubMedCrossRefGoogle Scholar
  40. 40.
    Lesage, D., Duprat, F., Fink, M., et al. (1994). FEBS Lett. 353, 27–42.CrossRefGoogle Scholar
  41. 41.
    Patil, N., Cox, D. R., Bhat, D., Faham, M., Myers, R. M., and Peterson, A. S. (1995). Nature Genet. 11, 126–129.PubMedCrossRefGoogle Scholar
  42. 42.
    Slesinger, P. A., Patil, N., Liao, J., Jan, Y. N., Jan, L. Y., and Cox, D. R. (1996). Neuron 16, 321–331.PubMedCrossRefGoogle Scholar
  43. 43.
    Doré, S., Kar, S., Rowe, W., and Quirion, R. (1997). Neuroscience 80, 1033–1040.PubMedCrossRefGoogle Scholar
  44. 44.
    Chomczynski, P. and Sacchi, N. (1987). Anal. Biochem. 162, 156–159.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Weiguo Yao
    • 1
  • Jin Zhong
    • 2
  • Clifford J. Rosen
    • 3
  • Janet M. Hock
    • 1
  • Wei-Hua Lee
    • 1
    • 2
  1. 1.Department of Anatomy Cell BiologyIndiana University
  2. 2.Department of PediatricsIndiana University
  3. 3.Maine Center for Osteoporosis Research and EducationSt. Joseph HospitalBangor

Personalised recommendations