Endocrine

, Volume 25, Issue 2, pp 173–186 | Cite as

Estrogen depletion differentially affects blood pressure depending on age in long-evans rats

  • John T. Clark
  • Munmun Chakraborty-Chatterjee
  • Milton Hamblin
  • J. Michael Wyss
  • Ian H. Fentie
Original Articles

Abstract

Normotensive female rats exhibit age-related decreases in estrous cyclicity and increases in blood pressure. In spontaneously hypertensive rats, estrogens, including dietary phytoestrogens, prevent or attenuate the increased blood pressure associated with estrogen depletion. The present studies examine the effects of ovariectomy (OVX) at either 3 or 10 mo of age. Although blood pressure increases from 3 to 9 mo, OVX at 3 mo of age has no added effect—despite the fact that OVX (compared to ovary-intact) rats weighed significantly more. In contrast, aging from 10 to 16 mo is associated with a further increase in blood pressure, which is potentiated by estrogen depletion. Removal of dietary phytoestrogens exacerbated the hypertensive effects of OVX in these middle-aged rats. As in younger rats, estrogen depletion at 10 mo of age was associated with greater weight gain. Whereas estrogen depletion at 3 mo of age was without effect on fluid intake over the next 6 mo, OVX at 10 mo of age was associated with decreased fluid intake. In a final study, rats were OVX at 3 mo of age with estradiol (E2) treatment initiated at 10 mo of age. Long-term OVX (>10 mo) was associated with increased blood pressure and mortality at 14–16 mo of age. Circulating levels of E2 were decreased by OVX. Plasma aldosterone was increased by OVX, an effect which was prevented by either E2 or phytoestrogens. Neither E2 nor aldosterone was affected by age. These data indicate that (a) the physiological effects of estrogen depletion vary with age; (b) phytoestrogens in the diet exert some protective effects; and (c) long-term OVX in the absence of hormone replacement is associated with premature mortality. We suggest that chronic increases in aldosterone and sympathetic tone underlie the hypertensive effects of estrogen depletion.

Key Words

Aging ovariectomy blood pressure body weight aldosterone estradiol phytoestrogens Long-Evans rats 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pickering, S. G. (1995). In: Hypertension: pathophysiology, diagnosis, and management, 2nd ed. Laragh, J. H. and Brenner, B. M. (eds.). Raven: New York.Google Scholar
  2. 2.
    Kotchen, J. M., McKean, H. E., and Kotchen, T. A. (1982). Hypertension 4, 128–134.Google Scholar
  3. 3.
    Burt, V. L., Whelton, P., and Roccella, E. J. (1995). Hypertension 25, 305–314.PubMedGoogle Scholar
  4. 4.
    Fentie, I. H., Greenwood, M. M., Wyss, J. M., and Clark, J. T. (2004). Endocrine 25, 15–22.PubMedCrossRefGoogle Scholar
  5. 5.
    Rossouw, J. E., Anderson, G. I., Prentice, R. L., and Writing Group for the Women’s Health Initiative Investigators. (2002). JAMA 288, 321–333.PubMedCrossRefGoogle Scholar
  6. 6.
    Stefanick, M. L., Cochrane, B. B., Hsia, J., Barad, D. H., Liu, J. H., and Johnson, S. R. (2003). Ann. Epidemiol. 13(9 Suppl), S78-S86.PubMedCrossRefGoogle Scholar
  7. 7.
    Anderson, G. I., Limacher, M., Assaf, A. R., Bassford, T., and Women’s Health Initiative Steering Committee. (2004). JAMA 291, 1701–1712.PubMedCrossRefGoogle Scholar
  8. 8.
    Fletcher, S. W. and Colditz, G. A. (2002). JAMA 288, 2824–2825.CrossRefGoogle Scholar
  9. 9.
    Simpkins, J. W., Rajakumar, G., Zhang, Y. Q., et al. (1997). J. Neurosurg. 87, 724–730.PubMedGoogle Scholar
  10. 10.
    Wise, P. M., Dubal, D. B., Wilson, M. E., Rau, S. W., and Bottner, M. (2001). Endocrinology 142, 969–973.PubMedCrossRefGoogle Scholar
  11. 11.
    McEwen, B. S. (2001). J. Appl. Physiol. 91, 2785–2801.PubMedGoogle Scholar
  12. 12.
    McCollough, L. D. and Hurn, P. D. (2003). Trends Endocrinol. Metab. 14, 228–235.CrossRefGoogle Scholar
  13. 13.
    Brownley, K. A., Hinderliter, A. L., West, S. G., et al. (2004). Am. J. Obstet. Gynecol. 190, 1052–1058.PubMedCrossRefGoogle Scholar
  14. 14.
    Spence, J. D. (1996). J. Hypertension Suppl. 14, 139–145.Google Scholar
  15. 15.
    Staessen, J., Bulpitt, C. J., Fagard, R., Lijnen, P., and Amery, A. (1989). J. Human Hypertension 3, 427–433.Google Scholar
  16. 16.
    Kannel, W. B. (1995). Hypertension Res. 18, 171–196.Google Scholar
  17. 17.
    Scuteri, A., Lakatta, E. G., Bos, A. J., and Fleg, J. L. (2001). Aging 13, 122–130.PubMedGoogle Scholar
  18. 18.
    Hunt, B. E., Taylor, J. A., Hamner, J. W., Gagnon, M., and Lispsitz, L. A. (2001). Circulation 103, 2909–2914.PubMedGoogle Scholar
  19. 19.
    Matthews, K. A., Flory, J. D., Owens, J. F., Harris, K. F., and Berga, S. L. (2001). Psychophysiology 38, 391–398.PubMedCrossRefGoogle Scholar
  20. 20.
    Weitz, G., Elam, M., Born, J., Fehm, H. L., and Dodt, C. (2001). J. Clin. Endocrinol. Metab. 86, 344–348.PubMedCrossRefGoogle Scholar
  21. 21.
    Hersh, A. L., Stefanick, M. L., and Stafford, R. S. (2004). JAMA 291, 47–53.PubMedCrossRefGoogle Scholar
  22. 22.
    Sorensen, M. B., Collins, P., Ong, P. J. L., et al. (2002). Circulation 106, 1646–1651.PubMedCrossRefGoogle Scholar
  23. 23.
    Higashi, Y., Sanada, M., Sasaki, S., et al. (2001). Hypertension 37, 651–657.PubMedGoogle Scholar
  24. 24.
    Alecrin, I. N., Aldrighi, J. M., Caldas, M. A., Gebara, O. C., Lopes, N. H., and Ramires, J. A. (2004). Heart 90, 777–781.PubMedCrossRefGoogle Scholar
  25. 25.
    Kuiper, G. G., Carlsson, B., Grandien, K., et al. Endocrinol. 138, 863–870.Google Scholar
  26. 26.
    Kuiper, G. G., Lemmen, J. G., Carlsson, B., et al. (1998). Endocrinol. 139, 4252–4263.CrossRefGoogle Scholar
  27. 27.
    Chang, H. C., Churchwell, M. I., Delclos, K. B., Newbold, R. R., and Doerge, D. R. (2000). J. Nutr. 130, 1963–1970.PubMedGoogle Scholar
  28. 28.
    Wyss, J. M. and Carlson, S. H. (2003). Curr. Hyperten. Rep. 5, 241–246.CrossRefGoogle Scholar
  29. 29.
    Fang, Z., Carlson, S. H., Chen, Y. F., Oparil, S., and Wyss, J. M. (2001). Am. J. Physiol. 281, R1934-R1939.Google Scholar
  30. 30.
    Lu, J. K. H., Hopper, B. R., Vargo, T. M., and Yen, S. C. C. (1978). Biol. Reprod. 21, 191–201.Google Scholar
  31. 31.
    Wise, P. M., Weiglund, N. G., Scarbrough, K., Larson, G. H., and Llyod, J. M. (1989). In: Ovarian secretions and cardiovascular and neurological function. Naftonlin, F., Gutmann, J. N., DeCherney, A. H., and Sarrell, P. M. (eds.). Raven Press: New York.Google Scholar
  32. 32.
    Fang, Z. and Wyss, J. M. (2000). FASEB J. 14, A662.Google Scholar
  33. 33.
    Williams, J. K., Young, D. K., Adams, M. R., Chen, M. F., Myers, A. K., and Ramwell, P. W. (1994). J. Pharmacol. Exper. Therap. 271, 671–676.Google Scholar
  34. 34.
    Clarkson, T. B., Anthony, M. S., Williams, J. K., Honore, E. K., and Cline, J. M. (1999). Proc. Soc. Exper. Biol. Med. 217, 365–368.Google Scholar
  35. 35.
    Fisher, N. D., Ferri, C., Bellini, C., et al. (1997). Hypertension 29, 980–985.PubMedGoogle Scholar
  36. 36.
    Peng, N., Clark, J. T., Wei, C. C., and Wyss, J. M. (2003). Hypertension 41, 1164–1167.PubMedCrossRefGoogle Scholar
  37. 37.
    Wyss, J. M., Yang, R. H., and Oparil, S. (1990). J. Auton. Nerv. Sys. 31, 21–30.CrossRefGoogle Scholar
  38. 38.
    Squadrito, F., Altavilla, D., Squadrito, G., et al. (2000). Cardiovasc. Res. 45, 454–462.PubMedCrossRefGoogle Scholar
  39. 39.
    Li, H.-F., Wang, L.-de, and Qu, S.-yi. (2004). Acta Pharmacol. Sin. 25, 313–318.PubMedGoogle Scholar
  40. 40.
    Martin, D. S., Breitkopf, N. P., Eyster, K. M., and Williams, J. L. (2001). Am. J. Physiol. 281, R553-R560.Google Scholar
  41. 41.
    Kreijkamp-Kaspers, S., Kok, L., Bots, M. L., Grobbee, D. E., and van der Schouw, Y. T. (2004). J. Hypertens. 22, 1381–1388.PubMedCrossRefGoogle Scholar
  42. 42.
    Teede, H. J., McGrath, B. P., DeSilva, L., Cehun, M., Fassoulakis, A., and Nestel, P. J. (2003). Arteriscler. Thromb. Vasc. Biol. 23, 1066–1071.CrossRefGoogle Scholar
  43. 43.
    de Kleijn, M. J., van der Schouw, Y. T., Wislon, P. W., Grobbee, D. E., and Jacques, P. (2002). J. Nutr. 132, 276–282.PubMedGoogle Scholar
  44. 44.
    Powers, J. B. and Valenstein, E. S. (1972). Science 175, 1003–1005.PubMedCrossRefGoogle Scholar
  45. 45.
    Patisaul, H. B., Dindo, M., Whitten, P. L., and Young, L. J. (2001). Endocrinol. 142, 2946–2952.CrossRefGoogle Scholar
  46. 46.
    Patisaul, H. B., Luskin, J. R., and Wilson, M. E. (2004). Horm. Behav. 45, 270–277.PubMedCrossRefGoogle Scholar
  47. 47.
    Patisaul, H. B., Melby, M., Whitten, P. L., and Young, L. J. (2002). Endocrinol. 143, 2189–2197.CrossRefGoogle Scholar
  48. 48.
    Kuroski de Bold, M. L. (1999). Cardiovasc. Res. 41, 524–531.PubMedCrossRefGoogle Scholar
  49. 49.
    Roesch, D. M., Tian, Y., Zheng W., Shi, M., Verbalis, J. G., and Sandberg, K. (2000). Endocrinol. 141, 4629–4636.CrossRefGoogle Scholar
  50. 50.
    Seely, E. W., Brosnihan, K. B., Jeunemaitre, X., et al. (2004). Clin. Endocrinol. 60, 315–321.CrossRefGoogle Scholar
  51. 51.
    Zacharieva, S., Kirilov, G., Kalinov, K., et al. (2002). Gynecol. Endocrinol. 16, 461–467.PubMedCrossRefGoogle Scholar
  52. 52.
    Tang, F. (1985). Horm. Metbol. Res. 17, 507–509.CrossRefGoogle Scholar
  53. 53.
    Iams, S. G., McMurty, J. P., and Wexler, B. C. (1979). Endocrinol. 104, 1357–1363.CrossRefGoogle Scholar
  54. 54.
    Chobanian, A. V., Bakris, G. L., Black, H. R., et al. (2003). Hypertens. 42, 1206–1252.CrossRefGoogle Scholar
  55. 55.
    Ribeiro, J. C., Guerra, S., Oliveira, J., Anderson, L. B., Duarte, J. A., and Mota, J. (2004). Am. J. Hum. Biol. 16, 556–562.PubMedCrossRefGoogle Scholar
  56. 56.
    Ladeia, A. M. and Guimaraes, A. C. (2003). Prevent. Cardiol. 6, 122–127.CrossRefGoogle Scholar
  57. 57.
    Heilbronn, L. K. and Ravussin, E. (2003). Am. J. Clin. Nutr. 78, 361–369.PubMedGoogle Scholar
  58. 58.
    Bodkin, N. L., Alexander, T. M., Ortmeyer, H. K., Johnson, E., and Hansen, B. C. (2003). J. Gerotol. A Biol. Sci. Med. Sci. 58, 212–219.Google Scholar
  59. 59.
    Wang, C., Weindruch, J. R., Fernandez, J. R., Coffey, C. S., Patel, P., and Allison, D. B. (2004). Int. J. Obesity Res. 28, 357–362.CrossRefGoogle Scholar
  60. 60.
    Anson, R. M. (2004). Ann. NY Acad. Sci. 1019, 427–429.PubMedCrossRefGoogle Scholar
  61. 61.
    Seshardi, S., Wolf, P. A., Beiser, L. J., et al. (2001). Arch. Internal Medicine 161, 2342–2350.Google Scholar
  62. 62.
    Van Den Buuse, M. (1994). Physiol. Behav. 55, 783–787.PubMedCrossRefGoogle Scholar
  63. 63.
    von Eiff, A. W., Plotz, E. J., Beck, K. J., and Czernik, A. (1971). Am. J. Obstet. Gynecol. 109, 887–892.Google Scholar
  64. 64.
    Clark, J. T., Keaton, A. K., Sahu, A., Kalra, S. P., Mahajan, S. C., and Gudger, J. N. (1998). Regul. Peptides 75–76, 335–345.CrossRefGoogle Scholar
  65. 65.
    Clark, J. T., Sahu, A., Mrotek, J. J. and Kalra, S. P. (1991). Am. J. Physiol. 261, R1234-R1241.PubMedGoogle Scholar
  66. 66.
    Clark, J. T. (1995). Neurosci. Biobehav. Rev. 19, 279–302.PubMedCrossRefGoogle Scholar
  67. 67.
    Bunag, R. D. and Teravainen, T. L. (1991). Mech. Ageing Dev. 59, 197–213.PubMedCrossRefGoogle Scholar
  68. 68.
    Hoeg, J. M., Willis, I. R., and Weinberger, M. H. (1977). Am. J. Physiol. 233, H369-H373.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • John T. Clark
    • 2
  • Munmun Chakraborty-Chatterjee
    • 2
  • Milton Hamblin
    • 2
  • J. Michael Wyss
    • 1
  • Ian H. Fentie
    • 2
  1. 1.Department of Cell BiologyUniversity of Alabama at BirminghamBirmingham
  2. 2.Department of PhysiologyMeharry Medical CollegeNashville

Personalised recommendations