Advertisement

Endocrine

, Volume 22, Issue 3, pp 211–223 | Cite as

Characterization of a membrane-associated estrogen receptor in a rat hypothalamic cell line (D12)

  • Darlene C. Deecher
  • Pamela Swiggard
  • Donald E. Frail
  • Lawrence T. O’Connor
Article

Abstract

The ability of estrogens to produce rapid changes in cellular function has been firmly established. The question remains whether these changes are mediated by a modified form of the nuclear estrogen receptor (ER) that is associated with the plasma membrane (mER) or by a completely novel membrane receptor. Therefore, we characterized the biochemical properties of the nuclear and membrane-associated ERs expressed endogenously in a rat hypothalamic endothelial cell line (D12). Radioligand binding experiments using D12 membrane fractions showed that these cells exhibit properties consistent with a binding site specific for estrogens (mER). Equilibrium binding assays using [125I]16-α-iodo-3,17-β-estradiol revealed saturable binding to mER, an affinity value similar to nuclear ER, with differing receptor expression levels. Competition assays revealed that 9 of 12 ER ligands tested had comparable affinities for mER and ER. For example, 17-α-estradiol and estrone had similar binding characteristics for both receptors while differences were noted for raloxifene, 17β-estradiol (E2), and genistein. Western blot and immunocytochemical analyses using antibodies specific for ERα confirmed that D12 cells expressed a membrane-associated protein with a molecular mass (67 kDa) similar to that of ERα that colocalized with caveolae-enriched membranes. A rapid increase in intracellar Ca2+ levels in the presence of E2 suggests that mER can mediate physiologic changes through calcium mobilization. These data support the expression of mER in these brain-derived endothelial cells that is similar to, but biochemically distinguishable from, nuclear ERα.

Key Words

Membrane estrogen receptor estradiol estrone raloxifene radioligands MC20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beato, M. and Sánchez-Pacheco, A. (1996). Endocr. Rev. 17, 587–609.PubMedCrossRefGoogle Scholar
  2. 2.
    Wong, M., Thompson, T. L., and Moss, R. L. (1996). Crit. Rev. Neurobiol. 10, 189–203.PubMedGoogle Scholar
  3. 3.
    Falkenstein, E., Tillmann, H. C., Christ, M., Feuring, M., and Wehling, M. (2000). Pharmacol. Rev. 52, 513–555.PubMedGoogle Scholar
  4. 4.
    Blondeau, J. P. and Baulieu, E. E. (1984). Biochem. J. 219, 785–792.PubMedGoogle Scholar
  5. 5.
    Luconi, M., Bonaccorsi, L., Maggi, N., et al. (1998). J. Clin. Endocrinol. Metab. 83, 877–885.PubMedCrossRefGoogle Scholar
  6. 6.
    Kelly, M. J., Moss, R. L., and Dudley, C. A. (1976). Brain Res. 114, 152–157.PubMedCrossRefGoogle Scholar
  7. 7.
    Nabekura, J., Oomura, Y., Minami, T., Mizuno, Y., and Fukuda, A. (1986). Science 233, 226–228.PubMedCrossRefGoogle Scholar
  8. 8.
    Towle, A. C. and Sze, P. Y. (1983). J. Steroid Biochem. 18, 135–143.PubMedCrossRefGoogle Scholar
  9. 9.
    Lieberherr, M., Grosse, B., Kachkache, M., and Balsan, S. (1993). J. Bone Miner. Res. 8, 1365–1376.PubMedCrossRefGoogle Scholar
  10. 10.
    Yamada, Y. (1979). Brain Res. 172, 165–168.PubMedCrossRefGoogle Scholar
  11. 11.
    Benten, W. P. M., Lieberherr, M., Giese, G., et al. (1999). FASEB J. 13, 123–133.PubMedGoogle Scholar
  12. 12.
    Orchinik, M., Moore, F. L., and Rose, J. D. (1994). Ann. NY Acad. Sci. 746, 101–112; discussion 112–114.PubMedCrossRefGoogle Scholar
  13. 13.
    Haller, J., Halasz, J., Makara, G. B., and Kruk, M. R. (1998). Neurosci. Biobehav. Rev. 23, 337–344.PubMedCrossRefGoogle Scholar
  14. 14.
    Moura, A. M. and Worcel, M. (1984). Hypertension 6, 425–430.PubMedGoogle Scholar
  15. 15.
    Farhat, M. Y., Abi-Younes, S., and Ramwell, P. W. (1996). Biochem. Pharmacol. 51, 571–576.PubMedCrossRefGoogle Scholar
  16. 16.
    Mendelsohn, M. E. (2002). Am. J. Cardiol. 89, 12E-17E; discussion, 17E–18E.PubMedCrossRefGoogle Scholar
  17. 17.
    Aronica, S. M., Kraus, W. L., and Katzenellenbogen, B. S. (1994). Proc. Natl. Acad. Sci. USA 91, 8517–8521.PubMedCrossRefGoogle Scholar
  18. 18.
    Pietras, R. J. and Szego, C. M. (1977). Nature 265, 69–72.PubMedCrossRefGoogle Scholar
  19. 19.
    Zheng, J. and Ramirez, V. D. (1997). J. Steroid Biochem. Mol. Biol. 62, 327–336.PubMedCrossRefGoogle Scholar
  20. 20.
    Pietras, R. J. and Szego, C. M. (1979). J. Steroid Biochem. 11, 1471–1483.PubMedCrossRefGoogle Scholar
  21. 21.
    Moats, R. K. II and Ramirez, V. D. (1998). Biol. Reprod. 58, 531–538.PubMedCrossRefGoogle Scholar
  22. 22.
    Migliaccio, A., Di Domenico, M., Castoria, G., et al. (1996). EMBO J. 15, 1292–1300.PubMedGoogle Scholar
  23. 23.
    Fitzpatrick, S. L., Berrodin, T. J., Jenkins, S. F., Sindoni, D. M., Deecher, D. C., and Frail, D. E. (1999). Endocrinology 140, 3928–3937.PubMedCrossRefGoogle Scholar
  24. 24.
    Ghazanfari, F. A. and Stewart, R. R. (2001). Brain Res. 890, 49–65.PubMedCrossRefGoogle Scholar
  25. 25.
    Russell, K. S., Haynes, M. P., Sinha, D., Clerisme, E., and Bender, J. R. (2000). Proc. Natl. Acad. Sci. USA 97, 5930–5935.PubMedCrossRefGoogle Scholar
  26. 26.
    Ikeda, M., Ogata, F., Curtis, S. W., et al. (1993). J. Biol. Chem. 268, 10296–10302.PubMedGoogle Scholar
  27. 27.
    Friend, K. E., Ang, L. W., and Shupnik, M. A. (1995). Proc. Natl. Acad. Sci. USA 92, 4367–4371.PubMedCrossRefGoogle Scholar
  28. 28.
    Norfleet, A. M., Thomas, M. L., Gametchu, B., and Watson, C. S. (1999). Endocrinology 140, 3805–3814.PubMedCrossRefGoogle Scholar
  29. 29.
    Toran-Allerand, C. D., Guan, X., MacLusky, N. J., et al. (2002). J. Neurosci. 22, 8391–8401.PubMedGoogle Scholar
  30. 30.
    Toran-Allerand, C. D. (2000). Novartis Found. Symp. 230, 56–69; discussion 69–73.PubMedCrossRefGoogle Scholar
  31. 31.
    Razandi, M., Oh, P., Pedram, A., Schnitzer, J., and Levin, E. R. (2002). Mol. Endocrinol. 16, 100–115.PubMedCrossRefGoogle Scholar
  32. 32.
    Clarke, C. H., Norfleet, A. M., Clarke, M. S. F., Watson, C. S., Cunningham, K. A., and Thomas, M. L. (2000). Neuroendocrinology 71, 34–42.PubMedCrossRefGoogle Scholar
  33. 33.
    Hisamoto, K., Ohmichi, M., Kurachi, H., et al. (2001). J. Biol. Chem. 276, 3459–3467.PubMedCrossRefGoogle Scholar
  34. 34.
    Caulin-Glaser, T., Garcia-Cardena, G., Sarrel, P., Sessa, W. C., and Bender, J. R. (1997). Circ. Res. 81, 885–892.PubMedGoogle Scholar
  35. 35.
    Campbell, C. H., Bulayeva, N., Brown, D. B., Gametchu, B., and Watson, C. S. (2002). FASEB J. 16, 1917–1927.PubMedCrossRefGoogle Scholar
  36. 36.
    Sheen, Y. Y., Simpson, D. M., and Katzenellenbogen, B. S. (1985). Endocrinology 117, 561–564.PubMedCrossRefGoogle Scholar
  37. 37.
    Watson, C. S., Campbell, C. H., and Gametchu, B. (2002). Steroids 67, 429–437.PubMedCrossRefGoogle Scholar
  38. 38.
    Schlegel, A., Wang, C. G., Pestell, R. G., and Lisanti, M. P. (2001). Biochem. J. 359, 203–210.PubMedCrossRefGoogle Scholar
  39. 39.
    Razandi, M., Alton, G., Pedram, A., Ghonshani, S., Webb, P., and Levin, E. R. (2003). Mol. Cell. Biol. 23, 1633–1646.PubMedCrossRefGoogle Scholar
  40. 40.
    Li, L., Haynes, M. P., and Bender, J. R. (2003). Proc. Natl. Acad. Sci. USA 100, 4807–4812.PubMedCrossRefGoogle Scholar
  41. 41.
    Rosner, W., Hryb, D. J., Khan, M. S., Nakhla, A. M., and Romas, N. A. (1998). Steroids 63, 278–281.PubMedCrossRefGoogle Scholar
  42. 42.
    Fitzpatrick, S. L., Funkhouser, J. M., Sindoni, D. M., et al. (1999). Endocrinology 140, 2581–2591.PubMedCrossRefGoogle Scholar
  43. 43.
    Shen, E. S., Meade, E. H., Perez, M. C., Deecher, D. C., Negrovilar, A., and Lopez, F. J. (1998). Endocrinology 139, 939–948.PubMedCrossRefGoogle Scholar
  44. 44.
    Song, K. S., Li, S. W., Okamoto, T., Quilliam, L. A., Sargiacomo, M., and Lisanti, M. P. (1996). J. Biol. Chem. 271, 9690–9697.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  • Darlene C. Deecher
    • 3
  • Pamela Swiggard
    • 3
  • Donald E. Frail
    • 1
    • 3
  • Lawrence T. O’Connor
    • 2
    • 3
  1. 1.PfizerSt. Louis
  2. 2.American Medical AssociationChicago
  3. 3.Women’s Health Research Institute, Wyeth Research N3114Collegeville

Personalised recommendations