Endocrine

, Volume 15, Issue 2, pp 165–175 | Cite as

Effect of estradiol. diethylstilbestrol, and resveratrol on F0F1-ATPase activity from mitochondrial preparations of rat heart, liver, and brain

  • Jingjing L. Kipp
  • Victor D. Ramirez
Article

Abstract

The question of whether estrogens or estrogen-like compounds would alter differentially the enzymatic activity of the F0F1-ATPase was addressed. Mitochondrial fractions of the liver, brain, and heart were obtained from adult male rats and solubilized by digitonin. About 85% of the adenosine triphosphate hydrolysis by these three preparations come from the mitochondrial F0F1-ATPase. The enzymatic activity differed in the following order: liver < brain < heart. A concentration of 13 nM estradiol stimulated the F0F1-ATPase activity in heart by 10% (p<0.01), but not in liver or brain. 17β-estradiol competed off the binding of estradiol-17β-17-(O-carboxymethyl)oxime: 125I-labeled bovine serium albumin to mitochondrial preparations of the heart, revealing two binding sites. Resveratrol inhibited the F0F1-ATPase activity in both heart and liver with an IC50 of 13–15 μM, which confirmed our previous report in preparations of brain. Lower doses (picomolar to nanomolar) of resveratrol stimulated the F0F1-ATPase activity in liver by 10% but not in heart. At 6.7 μM, diethylstilbestrol (DES) inhibited the F0F1-ATPase activity in the three preparations by 61–67%. This study demonstrates that estradiol activates rat heart mitochondrial F0F1-ATPase at physiologic concentrations and that the F0F1-ATPase activity is markedly different in rat liver, brain, and heart. In addition, estradiol, DES, and resveratrol alter the F0F1-ATPase activity selectively, probably via different mechanisms.

Key Words

Estradiol diethylstilbestrol resveratrol F0F1-ATPase/adenosine triphosphate synthase mitochondria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hendry, L. B. and Mahesh, V. B. (1995). J. Steroid. Biochem. Mol. Biol. 55, 173–183.PubMedCrossRefGoogle Scholar
  2. 2.
    Evans, R. M. (1988). Science 240, 889–895.PubMedCrossRefGoogle Scholar
  3. 3.
    Beato, M. (1989). Cell 56, 335–344.PubMedCrossRefGoogle Scholar
  4. 4.
    Groner, B., Hynes, N. E., Rahmsdorf, J., and Ponta, H. (1983). Nucleic Acids Res. 11, 4713–4725.PubMedCrossRefGoogle Scholar
  5. 5.
    Cato, A. C. B. and Weinmann, J. (1988). J. Cell Biol. 106, 2119–2125.PubMedCrossRefGoogle Scholar
  6. 6.
    Lieberherr, M. and Grosse, B. (1994). J. Biol. Chem. 269, 7217–7223.PubMedGoogle Scholar
  7. 7.
    Wasserman, W. J., Pinto, L. H., O'Connor, C. M., and Smith, L. D. (1980). Proc. Natl. Acad. Sci. USA 77, 1534–1536.PubMedCrossRefGoogle Scholar
  8. 8.
    Gekle, M., Silbernagl, S., and Oberleithner, H. (1997). Am. J. Physiol. 273, C1673-C1678.PubMedGoogle Scholar
  9. 9.
    Farhat, M. Y., Abi-Younes, S., Dingaan, B., Vargas, R., and Ramwell, P. W. (1996). J. Pharmacol. Exp. Ther. 276, 652–657.PubMedGoogle Scholar
  10. 10.
    Wehling, M. (1997). Annu. Rev. Physiol. 59, 365–393.PubMedCrossRefGoogle Scholar
  11. 11.
    Schwartz, Z., Gates, P. A., Nasatzky, E., Sylvia, V. L., Mendez, J., Dean, D. D., and Boyan, B. D. (1996). Biochim. Biophys. Acta 1282, 1–10.PubMedCrossRefGoogle Scholar
  12. 12.
    Endoh, H., Sasaki, H., Maruyama, K., Takeyama, K., Waga, I., Shimizu, T., Kato, S., and Kawashima, H. (1997). Biochem. Biophys. Res. Commun. 235, 99–102.PubMedCrossRefGoogle Scholar
  13. 13.
    Wong, M. and Moss, R. L. (1991). Brain Res. 543, 148–152.PubMedCrossRefGoogle Scholar
  14. 14.
    Berg, B. H. (1997). Biochim. Biophys. Acta 479, 152–171.Google Scholar
  15. 15.
    Mermelstein, P. G., Becker, J. B., and Surmeier, D. J. (1996). J. Neurosci. 16, 595–604.PubMedGoogle Scholar
  16. 16.
    Audy, M. C., Vacher, P., and Dufy, B. (1996). Eur. J. Endocrinol. 135, 367–373.PubMedCrossRefGoogle Scholar
  17. 17.
    Gu, Q. and Moss, R. L. (1996). J. Neurosci. 16, 3620–3629.PubMedGoogle Scholar
  18. 18.
    Ramirez, V. D. (1992). Neuroprotocols: Companion Methods Neurosci. 1, 35–41.Google Scholar
  19. 19.
    Ke, F. C. and Ramirez, V. D. (1990). J. Neurochem. 54, 467–472.PubMedCrossRefGoogle Scholar
  20. 20.
    Ramirez, V. D. and Zheng, J. (1996). Front. Neuroendocrinol. 17, 402–439.PubMedCrossRefGoogle Scholar
  21. 21.
    Moats, R. K. and Ramirez, V. D. (1998). Biol. Reprod. 58, 531–538.PubMedCrossRefGoogle Scholar
  22. 22.
    Moats, R. K. and Ramirez, V. D. (2000). J. Endocrinol. 166, 631–647.PubMedCrossRefGoogle Scholar
  23. 23.
    Ramirez, V. D. and Zheng, J. (1996). Cell. Mol. Neurobiol. 16, 175–198.PubMedCrossRefGoogle Scholar
  24. 24.
    Voet, D. and Voet, J. G., eds. (1990). Biochemistry John Wiley & Sons: New York.Google Scholar
  25. 25.
    Stryer, L., ed. (1995). Biochemistry; 4th ed. W. H. Freeman: New York.Google Scholar
  26. 26.
    Wang, H. and Oster, G. (1998). Nature 396, 279–282.PubMedCrossRefGoogle Scholar
  27. 27.
    Zheng, J. and Ramirez, V. D. (1999). Eur. J. Pharmacol. 368, 95–102.PubMedCrossRefGoogle Scholar
  28. 28.
    McEnery, M. W., and Pedersen, P. L. (1986). J. Biol. Chem. 261, 1745–1752.PubMedGoogle Scholar
  29. 29.
    Gehm, B. D., McAndrews, J. M., Chien, P. Y., and Jameson, J. L. (1997). Proc. Natl. Acad. Sci. USA 94, 14,138–14,143.CrossRefGoogle Scholar
  30. 30.
    Mizutani, K., Ikeda, K., Kawai, Y., and Yamori, Y. (1998). Biochem. Biophys. Res. Commun. 253, 859–863.PubMedCrossRefGoogle Scholar
  31. 31.
    Stahl, S., Chun, T. Y., and Gray, W. G. (1998). Toxicol. Appl. Pharmacol. 152, 41–48.PubMedCrossRefGoogle Scholar
  32. 32.
    Humfrey, C. D. (1998). Nat. Toxins 6, 51–59.PubMedCrossRefGoogle Scholar
  33. 33.
    Strauss, L., Santti, R., Saarinen, N., Streng, T., Joshi, S., and Makela, S. (1998). Toxicol. Lett. 102–103, 349–354.PubMedCrossRefGoogle Scholar
  34. 34.
    Lardy, H. A., Johnson, D., and McMurray, W. C. (1958). Arch. Biochem. Biophys. 78, 587–597.PubMedCrossRefGoogle Scholar
  35. 35.
    Cross, R. L. and Kohlbrenner, W. E. (1978). J. Biol. Chem. 253, 4865–4873.PubMedGoogle Scholar
  36. 36.
    Higuti, T., Kuroiwa, K., Kawamura, Y., Morimoto, K., and Tsujita, H. (1993). Biochim. Biophys. Acta. 1172, 311–314.PubMedGoogle Scholar
  37. 37.
    Zheng, J. and Ramirez, V. D. (1997). J. Steroid Biochem. Mol. Biol. 62, 327–336.PubMedCrossRefGoogle Scholar
  38. 38.
    Zheng, J. and Ramirez, V. D. (1999). Biochem. Biophys. Res. Commun. 261, 499–503.PubMedCrossRefGoogle Scholar
  39. 39.
    Cretin, F., Baggetto, L. G., Denoroy, L., and Godinot, C. (1991). Biochem. Biophys. Acta 1058, 141–146.PubMedCrossRefGoogle Scholar
  40. 40.
    Higuti, T., Kuroiwa, K., Kawamura, Y., Morimoto, K., and Tsujita, H. (1993). Biochem. Biophys. Acta 1172, 311–314.PubMedGoogle Scholar
  41. 41.
    Harris, D. A. and Bashford, C. L., eds. (1987). Spectrophotometry and spectrofluorimetry: a practical approach. IRL: Oxford.Google Scholar
  42. 42.
    Berman, S. B., Watkins, S. C., and Hastings, T. G. (2000) Exp. Neurol. 164, 415–425.PubMedCrossRefGoogle Scholar
  43. 43.
    Palmer, J. W. and Pfeiffer, D. R. (1981). J. Biol. Chem. 256, 6742–6750.PubMedGoogle Scholar
  44. 44.
    Novgorodov, S. A., Gudz, T. I., Milfrom, Y. M., and Brierley, G. P. (1992). J. Biol. Chem. 267, 16,274–16,282.Google Scholar
  45. 45.
    Berman, S. B. and Hastings, T. G. (1999). J. Neurochem. 73, 1127–1137.PubMedCrossRefGoogle Scholar
  46. 46.
    Haworth, R. A. and Hunter, D. R. (1980). J. Membr. Biol. 54, 231–236.PubMedCrossRefGoogle Scholar
  47. 47.
    Crompton, M. and Costi, A. (1990). Biochem. J. 266, 33–39.PubMedGoogle Scholar
  48. 48.
    McEnery, M. W., Hullihen, J., and Pedersen, P. L. (1989). J. Biol. Chem. 264, 12.029–12.036.Google Scholar
  49. 49.
    Zhai, P. Y., Eurell, T. E., Cooke, P. S., Lubahn, D. B., and Gross, D. R. (2000). Am. J. Physiol. Circ. Physiol. 278, H1640-H1647.Google Scholar
  50. 50.
    Zheng, J. and Ramirez, V. D. (1999). J. Steroid Biochem. Mol. Biol. 68, 65–75.PubMedCrossRefGoogle Scholar
  51. 51.
    Ramirez, V. D. and Zheng, J. (1999). In: Estrogens and antiestrogens I. Oettel, M. and Schillinger, E. (eds.). Springer-Ver-lag: Berlin.Google Scholar
  52. 52.
    Stock, D., Leslie, A. G. W., and Walker, J. E. (1999). Science 284, 1700–1705.CrossRefGoogle Scholar
  53. 53.
    Boyer, P. D. (1997). Annu. Rev. Biochem. 66, 717–749.PubMedCrossRefGoogle Scholar
  54. 54.
    Kaim, G. and Dimroth, P. (1999). EMBO J. 18, 4118–4127.PubMedCrossRefGoogle Scholar
  55. 55.
    Pedersen, P. L. (1999). J. Bioenerg. Bio. 31, 291–304.CrossRefGoogle Scholar
  56. 56.
    Bradford, M. M. (1976). Anal. Biochem. 72, 248–254.PubMedCrossRefGoogle Scholar
  57. 57.
    Laemmli, U. K. (1970). Nature 227, 680–685.PubMedCrossRefGoogle Scholar
  58. 58.
    Towbin, H., Staehelin, R., and Gordon, J. (1979). Proc. Natl. Acad. Sci. USA 76, 4350–4354.PubMedCrossRefGoogle Scholar
  59. 59.
    Matsudaira, P. (1987). J. Biol. Chem. 261, 10,035–10,038.Google Scholar
  60. 60.
    Paál, K., Müller, J. and Hegedûs, L. (2001). Eur. J. Biochem. 268, 2187–2191.PubMedCrossRefGoogle Scholar
  61. 61.
    Munson, P. J. and Rodbard, D. (1980). Anal. Biochem. 107, 220–239.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Jingjing L. Kipp
    • 1
  • Victor D. Ramirez
    • 1
  1. 1.Department of Molecular and Integrative PhysiologyUniversity of Illinois at Urbana-ChampaignUrbana

Personalised recommendations