, Volume 15, Issue 1, pp 111–118 | Cite as

Analysis of glucocorticoid and androgen receptor gene fusions delineates domains required for transcriptional specificity

  • David C. Whitacre
  • K. Joy Karnas
  • Roger L. Miesfeld


Androgen receptor (AR) and glucocorticoid receptor (GR) influence distinct physiologic responses in steroid-responsive cells despite their shared ability to selectively bind in vitro to the same canonical DNA sequence (TGTTCT). While the DNA-binding domains (DBDs) of these receptors are highly conserved, the amino N-terminal domain (NTD) and hormone-binding domain (HBD) are evolutionarily divergent. To determine the relative contribution of these functional domains to steroid-specific effects in vivo, we constructed a panel of AR/GR gene fusions by interchanging the NTD, DBD, and HBD regions of each receptor and measured transcriptional regulatory activities in transfected kidney and prostate cell lines. We found that GR was approximately 10-fold more active than AR when tested with the mouse mammary tumor virus promoter, and that this difference in activity was primarily owing to sequence divergence in the NTDs. We also tested transcriptional activation of the androgen-dependent rat probasin promoter, and in this case, AR was at least twofold more active than GR. Analysis of the chimeric receptors revealed that this difference mapped to the DBD region of the two receptors. Transcriptional repression functions of the wild-type and chimeric receptors were measured using an activator protein 1 (AP-1) transrepression assay and identified the GR HBD as a more potent transrepressor of AP-1 transcriptional activation than the AR HBD. Taken together, our analyses reveal that evolutionary sequence divergence between AR and GR functional domains results in unique promoter-specific activities within biologic systems in which both AR and GR are normally expressed.

Key Words

Glucocorticoid receptor androgen receptor steroid-regulated gene expression transrepression evolutionary divergence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miesfeld, R. L. (1989). Crit. Rev. Biochem. Mol. Biol., 24, 101–117.PubMedGoogle Scholar
  2. 2.
    Rundlett, S. E. and Miesfeld, R. L. (1995). Mol. Cell. Endocrinol. 109, 1–10.PubMedCrossRefGoogle Scholar
  3. 3.
    Hao, E., Menke, J. B., Smith, A. M., Jones, C., Geffner, M. E., Hershman, J. M., Wuerth, J. P., Samuels, H. H., Ways, D. K., and Usala, S. J. (1994). Mol. Endocrinol. 8, 841–851.PubMedCrossRefGoogle Scholar
  4. 4.
    Whitfield, G. K., Jurutka, P. W., Haussler, C. A., and Haussler, M. R. (1999). J. Cell. Biochem. 32/33(Suppl.) 110–122.CrossRefGoogle Scholar
  5. 5.
    Schoenmakers, E., Alen, P., Verrijdt, G., Peeters, B., Verhoeven, G., Rombauts, W., and Claessens, F. (1999). Biochem. J., 341, 515–521.PubMedCrossRefGoogle Scholar
  6. 6.
    Verrijdt, G., Schoenmakers, E., Alen, P., Haelens, A., Peeters, B., Rombauts, W., and Claessens, F. (1999). Mol. Endocrinol. 13, 1558–1570.PubMedCrossRefGoogle Scholar
  7. 7.
    Nelson, C. C., Hendy, S. C., Shukin, R. J., Cheng, H., Bruchovsky, N., Koop, B. F., and Rennie, P. S. (1999). Mol. Endocrinol. 13, 2090–2107.PubMedCrossRefGoogle Scholar
  8. 8.
    Freedman, L. P. (1999). Trends Endocrinol. Metab., 10, 403–407.PubMedCrossRefGoogle Scholar
  9. 9.
    Leo, C. and Chen, J. D. (2000). Gene 245, 1–11.PubMedCrossRefGoogle Scholar
  10. 10.
    Subramaniam, N., Treuter, E., and Okret, S., (1999). J. Biol. Chem. 274, 18,121–18,127.Google Scholar
  11. 11.
    Ikonen, T., Palvimo, J. J., and Janne, O. A. (1997). J. Biol. Chem. 272, 29,821–29,828.CrossRefGoogle Scholar
  12. 12.
    Schule, R., Rangarajan, P., Kliewer, S., Ransone, L. J., Bolado, J., Yang, N., Verma, I. M., and Evans, R. M. (1990). Cell 62, 1217–1226.PubMedCrossRefGoogle Scholar
  13. 13.
    Kamei, Y., Xu, L., Heinzel, T., Torchia, J., Kurokawa, R., Gloss, B., Lin, S. C., Heyman, R. A., Rose, D. W., Glass, C. K., and Rosenfeld, M. G. (1996). Cell, 85, 403–414.PubMedCrossRefGoogle Scholar
  14. 14.
    Webster, J. C., and Cidlowski, J. A. (1999) Trends Endocrinol. Metab. 10, 396–402.PubMedCrossRefGoogle Scholar
  15. 15.
    Fronsdal, K., Engedal, N., Slagsvold, T., and Saatcioglu, F. (1998). J. Biol. Chem., 273, 31,853–31,859.CrossRefGoogle Scholar
  16. 16.
    Aarnisalo, P., Palvimo, J. J., and Janne, O. A. (1998). Proc. Natl. Acad. Sci. USA, 95, 2122–2127.PubMedCrossRefGoogle Scholar
  17. 17.
    Doesburg, P., Kuil, C. W., Berrevoets, C. A., Steketee, K., Faber, P. W., Mulder, E., Brinkmann, A. O., and Trapman, J. (1997). Biochemistry, 36, 1052–1064.PubMedCrossRefGoogle Scholar
  18. 18.
    Alen, P., Claessens, F., Verhoeven, G., Rombauts, W., and Peeters, B. (1999). Mol. Cell. Biol. 19, 6085–6097.PubMedGoogle Scholar
  19. 19.
    Kumar, R., Baskakov, I. V., Srinivasan, G., Bolen, D. W., Lee, J. C., and Thompson, E. B. (1999). J. Biol. Chem. 274, 24,737–24,741.Google Scholar
  20. 20.
    Rennie, P. S., Bruchovsky, N., Leco, K. J., et al. (1993). Mol. Endocrinol. 7, 23–36.PubMedCrossRefGoogle Scholar
  21. 21.
    Rundlett, S. E., Gordon, D. A., and Miesfeld, R. L. (1992). Exp. Cell. Res. 203, 214–221.PubMedCrossRefGoogle Scholar
  22. 22.
    Schule, R., and Evans, R. M. (1991). Cold Spring Harbor Symp. Quant. Biol. 56, 119–127.PubMedGoogle Scholar
  23. 23.
    Konig, H., Ponta, H., Rahmsdorf, H. J., and Herrlich, P. (1992). EMBO J., 11, 2241–2246.PubMedGoogle Scholar
  24. 24.
    Kallio, P. J., Poukka, H., Moilanen, A., Janne, O. A., and Palvimo, J. J. (1995). Mol. Endocrinol. 9, 1017–1028.PubMedCrossRefGoogle Scholar
  25. 25.
    Kerppola, T. K., Luk, D., and Curran, T. (1993). Mol. Cell. Biol. 13, 3782–3791.PubMedGoogle Scholar
  26. 26.
    List, H. J., Lozano, C., Lu, J., Danielsen, M., Wellstein, A., and Riegel, A. T. (1999). Exp. Cell. Res. 250, 414–422.PubMedCrossRefGoogle Scholar
  27. 27.
    Hong, H., Darimont, B. D., Ma, H., Yang, L., Yamamoto, K. R., and Stallcup, M. R. (1999). J. Biol. Chem. 274, 3496–3502.PubMedCrossRefGoogle Scholar
  28. 28.
    Prefontaine, G. G., Walther, R., Giffin, W., Lemieux, M. E., Pope, L., and Hache, R. J. (1999). J. Biol. Chem. 274, 26,713–26,719.CrossRefGoogle Scholar
  29. 29.
    Scheller, A., Hughes, E., Golden, K. L., and Robins D. M. (1998). J. Biol. Chem. 273, 24,216–24,222.Google Scholar
  30. 30.
    Le Ricousse, S., Gouilleux, F., Fortin, D., Joulin, V. and Richard-Foy, H. (1996). Proc. Natl. Acad. Sci. USA 93, 5072–5077.PubMedCrossRefGoogle Scholar
  31. 31.
    Rundlett, S. E., Wu, X. P., and Miesfeld, R. L. (1990). Mol. Endocrinol. 4, 708–714.PubMedGoogle Scholar
  32. 32.
    Zhou, Z., Corden, J. L., and Brown, T. R. (1997). J. Biol. Chem. 272, 8227–8235.PubMedCrossRefGoogle Scholar
  33. 33.
    Claessens, F., Alen, P., Devos, A., Peeters, B., Verhoeven, G., and Rombauts, W. (1996). J. Biol. Chem. 271, 19,013–19,016.Google Scholar
  34. 34.
    Pearce, D., Matsui, W., Miner, J. N., and Yamamoto, K. R. (1998). J. Biol. Chem. 273, 30,081–30,085.Google Scholar
  35. 35.
    Lefstin, J. A. and Yamamoto, K. R. (1998). Nature, 392, 885–888.PubMedCrossRefGoogle Scholar
  36. 36.
    Ning, Y. M., and Robins, D. M. (1999), J. Biol. Chem. 274, 30,624–30,630.Google Scholar
  37. 37.
    Dahlman-Wright, K., Almlof, T., McEwan, I. J., Gustafsson, J. A., and Wright, A. P. (1994). Proc. Natl. Acad. Sci. USA, 91, 1619–1623.PubMedCrossRefGoogle Scholar
  38. 38.
    Hollenberg, S. M. and Evans, R. M. (1988). Cell, 55, 899–906.PubMedCrossRefGoogle Scholar
  39. 39.
    Chamberlain, N. L., Whitacre, D. C., and Miesfeld, R. L. (1996). J. Biol. Chem. 271, 26,772–26,778.Google Scholar
  40. 40.
    Gottlieb, B., Lehvaslaiho, H., Beitel, L. K., Lumbroso, R., Pinsky, L., and Trifiro, M. (1998). Nucleic Acids Res. 26, 234–238.PubMedCrossRefGoogle Scholar
  41. 41.
    Iniguez-Lluhi, J. A., Lou, D. Y., and Yamamoto K. R. (1997). J. Biol. Chem., 272, 4149–4156.PubMedCrossRefGoogle Scholar
  42. 42.
    Almlof, T., Wallberg, A. E., Gustafsson, J. A., and Wright, A. P. (1998). Biochemistry 37, 9586–9594.PubMedCrossRefGoogle Scholar
  43. 43.
    Jenster, G., van der Korput, H. A., Trapman, J., and Brinkmann A. O. (1995). J. Biol. Chem., 270, 7341–7346.PubMedCrossRefGoogle Scholar
  44. 44.
    Langley, E., Zhou, Z. X., and Wilson, E. M. (1995). J. Biol. Chem. 270, 29,983–29,990.CrossRefGoogle Scholar
  45. 45.
    Bevan, C. L., Hoare, S., Claessens, F., Heery, D. M., and Parker, M. G. (1999). Mol. Cell. Biol. 19, 8383–8392.PubMedGoogle Scholar
  46. 46.
    He, B., Kemppainen, J. A., and Wilson, E. M. (2000). J. Biol. Chem. 275, 22,986–22,994.Google Scholar
  47. 47.
    Yang-Yen, H. F., Chambard, J. C., Sun, Y. L., Smeal, T., Schmidt, T. J., Drouin, J., and Karin, M. (1990). Cell 62, 1205–1215.PubMedCrossRefGoogle Scholar
  48. 48.
    Chamberlain, N. L. (1994). Ph.D. Dissertation. University of Arizona, Tuscon, Arizona.Google Scholar
  49. 49.
    Luckow, B., and Schutz, G. (1987). Nucleic Acids Res. 15, 5490.PubMedCrossRefGoogle Scholar
  50. 50.
    Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., eds. (1998). Current protocols in molecular biology. John Wiley & Sons: New York.Google Scholar
  51. 51.
    Choong, C. S., Kemppainen, J. A., and Wilson, E. M. (1998). J. Mol. Evol. 47, 334–342.PubMedCrossRefGoogle Scholar
  52. 52.
    Lubahn, D. B., Joseph, D. R., Sar, M., Tan, J., Higgs, H. N., Larson, R. E., French, F. S., and Wilson, E. M. (1988). Mol. Endocrinol., 2, 1265–1275.PubMedCrossRefGoogle Scholar
  53. 53.
    Faber, P. W., King, A., van Rooij, H. C., Brinkmann, A. O., de Both, N. J., and Trapman, J. (1991). Biochem. J., 278, 269–278.PubMedGoogle Scholar
  54. 54.
    Krongrad, A., Wilson, J. D., and McPhaul M. J. (1995). J. Androl., 16, 209–212.PubMedGoogle Scholar
  55. 55.
    Chang, C. S., Kokontis, J. and Liao, S. T. (1988). Proc. Natl. Acad. Sci. USA 85, 7211–7215.PubMedCrossRefGoogle Scholar
  56. 56.
    Fischer, L., Catz, D., and Kelley, D. (1993). Proc. Natl. Acad. Sci. USA 90, 8254–8258.PubMedCrossRefGoogle Scholar
  57. 57.
    Fischer, L. M., Catz, D., and Kelley, D. B. (1995). Dev. Biol. 170, 115–126.PubMedCrossRefGoogle Scholar
  58. 58.
    Reynolds, P. D., Pittler, S. J., and Scammell, J. G. (1997). J. Clin. Endocrinol. Metab. 82, 465–472.PubMedCrossRefGoogle Scholar
  59. 59.
    Keightley, M. C. and Fuller, P. J. (1994). Mol. Endocrinol., 8, 431–439.PubMedCrossRefGoogle Scholar
  60. 60.
    Hollenberg, S. M., Weinberger, C., Ong, E. S., Cerelli, G., Oro, A., Lebo, R., Thompson, E. B., Rosenfeld, M. G., and Evans, R. M. (1985). Nature 318, 635–641.PubMedCrossRefGoogle Scholar
  61. 61.
    Danielsen, M., Northrop, J. P., and Ringold, G. M. (1986). EMBO J. 5, 2513–2522.PubMedGoogle Scholar
  62. 62.
    Miesfeld, R., Rusconi, S., Godowski, P. J., Maler, B. A., Okret, S., Wikstrom, A. C., Gustafsson, J. A., and Yamamoto, K. R. (1986). Cell 46, 389–399.PubMedCrossRefGoogle Scholar
  63. 63.
    Gao, X., Kalkhoven, E., Peterson-Maduro, J., van der Burg, B., and Destree, O. H. (1994). Biochim. Biophys. Acta, 1218, 194–198.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • David C. Whitacre
    • 1
  • K. Joy Karnas
    • 1
  • Roger L. Miesfeld
    • 1
    • 2
  1. 1.Department of Molecular and Cellular BiologyUniversity of ArizonaTucson
  2. 2.Department of Biochemistry and Molecular Biophysics, Biological Sciences West 518AUniversity of ArizonaTucson

Personalised recommendations