Advertisement

Endocrine

, Volume 13, Issue 3, pp 401–407 | Cite as

Combined modification of intracellular and extracellular loci on human gonadotropin-releasing hormone receptor provides a mechanism for enhanced expression

  • Guadalupe Maya-Núñez
  • Jo Ann Janovick
  • P. Michael Conn
Article

Abstract

The mammalian gonadotropin-releasing hormone (GnRH) receptor (GnRH-R) has been a therapeutic target for human and animal medicine. This receptor is a unique G-protein-coupled receptor that lacks the intracellular C-terminal domain commonly associated with this family. Development of highthrough put screens for agents active in humans has been hampered by low expression levels of the hGnRH-R in cellular models. Two sites have attracted the interest of laboratories studying regulation of expression. The chimeric addition of the C-terminal tail from catfish GnRH-R (cfGnRH-R) to the rat GnRH-R significantly augmented receptor expression in GH3 cells. In addition, rodent GnRH-R contains 327 amino acids, but cow, sheep, and human GnRH-R (hGnRH-R) contain 328 residues, the “additional” residue being a Lys 191. Deletion of Lys 191 (del 191) from the hGnRH-R resulted in increased receptor expression levels and decreased internalization rates in both COS-7 and HEK 293 cells. In this study, the combined effect of the addition of the C-tail from cfGnRH-R and deletion of the Lys 191 from the hGNRH-R was compared to expression of the wild-type (WT) or either alteration alone in a transient expression system using primate cells. The altered receptor (hGNRH-R[del 191]-C-tail) showed significantly increased receptor expression at the cell surface compared with the WT or either modification alone. The inositol phosphate response to stimulation was also significantly elevated in response to GnRH agonist. After treatment with a GnRH agonist, the altered receptors showed a slower internalization rate. The homologous steady-state regulation of the WT and the altered receptors was similar, although the response of the altered receptors was significantly decreased. These results suggest that the conformational change in the receptor as a result of the deletion of Lys 191 and the addition of the C-terminus tail substantially increased the steady-state receptor expression and decreased internalization and homologous regulation. Because the effects on expression are greater than additive, it appears that these alterations exert their effects by differing means. These techniques for expression of the hGnRH-R in transfected mammalian cells provide the basis for a therapeutic screen for GnRH analogs, agonists, and antagonists of the hGnRH.

Key Words

Gonadotropin-releasing hormone receptor chimeric receptor enhanced receptor expression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Conn, P. M. and Crowley, W. F. (1991). N. Engl. J. Med. 324, 93–103.PubMedCrossRefGoogle Scholar
  2. 2.
    Sealfon, S. C., Weinstein, H., and Millar, R. P. (1997). Endocr. Rev. 18, 180–205.PubMedCrossRefGoogle Scholar
  3. 3.
    Byrne, B., McGregor, A., Taylor, P. L., Sellar, R., Rodger, F. E., Fraser, H. M., and Eidne, K. A. (1999). J. Endocrinol. 163, 447–456.PubMedCrossRefGoogle Scholar
  4. 4.
    Stanislaus, D., Ponder, S., Ji, T. H., and Conn, P. M. (1998). Biol. Reprod. 59, 579–586.PubMedCrossRefGoogle Scholar
  5. 5.
    Stojilkovick, S. S., Reinhart, J., and Catt, K. J. (1994). Endocr. Rev. 15, 462–499.CrossRefGoogle Scholar
  6. 6.
    Heding, A., Vrecl, M., Bogerd, J., McGregor, A., Sellar, R., Taylor, P. L., and Eidne, K. A. (1998). J. Biol. Chem. 273, 11,472–11,477.CrossRefGoogle Scholar
  7. 7.
    Pawson, A. J., Katz, A., Sun, Y. M., Lopes, J., Illing, N., Millar, R. P., and Davidson, J. S. (1998). J. Endocrinol. 156, R9-R12.PubMedCrossRefGoogle Scholar
  8. 8.
    Lin, X., Janovick, J. A., Brothers, S., Blomenröhr, M., Bogerd, J., and Conn, P. M. (1998). Mol. Endocrinol. 12, 161–171.PubMedCrossRefGoogle Scholar
  9. 9.
    Arora, K. K., Chung, H. O., and Catt, K. J. (1999). Mol. Endocrinol. 13, 890–896.PubMedCrossRefGoogle Scholar
  10. 10.
    Horton, R. M., Ho, S. N., Pullen, J. K., Hunt, H. D., Cai, Z., and Pease, L. R. (1993). Methods Enzymol. 217, 270–279.PubMedGoogle Scholar
  11. 11.
    Myburgh, D. B., Pawson, A. J., Davidson, J. S., Flanagan, C. A., Millar, R. P., and Hapgood, J. P. (1998). Eur. J. Endocrinol. 139, 438–447.PubMedCrossRefGoogle Scholar
  12. 12.
    Ovchinnikov, Y. A., Abdulaev, N. G., and Bogachuk, A. S. (1988). FEBS Lett. 230, 1–5.PubMedCrossRefGoogle Scholar
  13. 13.
    O'Dowd, B. F., Hnatowich, M., Caron, M. G., Lefkowitz, R. J., and Bouvier, M. (1989). J. Biol. Chem. 264, 7564–7569.PubMedGoogle Scholar
  14. 14.
    Ng, G. Y., George, S. R., Zastawny, R. L., Caron, M., Bouvier, M., Dennis, M., and O'Dowd, B. F. (1993). Biochemistry 32, 11,727–11,733.CrossRefGoogle Scholar
  15. 15.
    Zhu, H., Wang, H., and Ascoli, M. (1995). Mol. Endocrinol. 9, 141–150.PubMedCrossRefGoogle Scholar
  16. 16.
    Sibley, D. R., Benovick, J. L., Caron, M. G., and Lefkowitz, R. J. (1987). Cell 48, 913–922.PubMedCrossRefGoogle Scholar
  17. 17.
    Leeb-Lundberg, L. M. F., Cotecchia, S., DeBlassi, A., Caron, M. G., and Lefkowitz, R. J. (1987). J. Biol. Chem. 262, 3098–3105.PubMedGoogle Scholar
  18. 18.
    Hunyady, L., Bor, M., Balla, T., and Catt, K. J. (1994). J. Biol. Chem. 269, 31378–31382.PubMedGoogle Scholar
  19. 19.
    Thomas, W. G., Baker, K. M., Motel, T. J., and Thekkumkara, T. J. (1995). J. Biol. Chem. 270, 22,153–22,159.Google Scholar
  20. 20.
    Sanchez-Yague, J., Rodriguez, M. C., Segaloff, D.L., and Ascoli, M. (1992). J. Biol. Chem. 267, 7217–7220.PubMedGoogle Scholar
  21. 21.
    Lattion, A. L., Diviani, D., and Cotecchia, S. (1994). J. Biol. Chem. 269, 22,887–22,893.Google Scholar
  22. 22.
    Strader, C. D., Sigal, I. S., Blake, A. D., Cheung, A. H., Register, R. B., Rands, E., Zemcik, B. A., Candelore, M. R., and Dixon, R. A. (1987). Cell 49, 855–863.PubMedCrossRefGoogle Scholar
  23. 23.
    Hipkin, R. W., Liu, X. B. and Ascoli, M.(1995). J. Biol. Chem. 270, 26,683–26,689.Google Scholar
  24. 24.
    Blomenröhr, M., Heiding, A., Sellar, R., Leurs, R., Bogerd, J., Eidne, K. A., and Willars, G. B. (1999). Mol. Pharmacol. 56, 1229–1237.PubMedGoogle Scholar
  25. 25.
    Heding, A., Vrecl, M., Hanyaloglu, A. C., Sellar, R., Taylor, P. L., and Eidne, K. A. (2000). Endocrinology 141, 299–306.PubMedCrossRefGoogle Scholar
  26. 26.
    Cornea, A., Janovick, J. A., Lin, X., and Conn, P. M. (1999). Endocrinology 140, 4272–4280.PubMedCrossRefGoogle Scholar
  27. 27.
    Huckle, W. R. and Conn, P. M. (1987). Methods Enzymol. 141, 149–155.PubMedCrossRefGoogle Scholar
  28. 28.
    Marian, J. and Conn, P. M. (1980). Life Sci. 27, 87–92.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2000

Authors and Affiliations

  • Guadalupe Maya-Núñez
    • 1
    • 2
  • Jo Ann Janovick
    • 1
  • P. Michael Conn
    • 1
  1. 1.Oregon Regional Primate Research Center and Department of Physiology and PharmacologyOregon Health Sciences UniversityBeaverton
  2. 2.Unidad de Investigación Médica en Biología del DesarrolloHospital de Pediatría, C.M.N. S.XXI, Instituto Mexicano del Seguro SocialMéxico D.F.

Personalised recommendations