Advertisement

Cardiovascular Toxicology

, Volume 6, Issue 2, pp 111–130 | Cite as

The NF-κB regulatory network

Original Research

Abstract

Nuclear factor (NF)-κB is a family of seven structurally related transcription factors that play a central role in cardiovascular growth, stress response, and inflammation by controlling gene network expression. Although the NF-κB subunits are ubiquitously expressed, their actions are regulated in a cell-type and stimulus-specific manner, allowing for a diverse spectrum of effects. For example, NF-κB is activated by cytokines, reactive oxygen species, bacterial cell wall products, vasopressors, viral infection, and DNA damage. Recent molecular dissection of its mechanisms for activation has shown that NF-κB can be induced by the so-called “canonical” and “noncanonical” pathways, leading to distinct patterns in the individual subunits activated and down-stream genetic responses produced. The canonical pathway involves activating the IκB kinase (IKK) with subsequent phosphorylation-induced proteolysis of the IκBα inhibitors and consequent nuclear translocation of the Rel A transcriptional activator. Recent work using high-density oligonucleotide arrays have begun to systematically dissect the scope of the gene network under canonical NF-κB control and have yielded important insights into biological pathways controlled by it. This pathway controls expression of noncontiguous, functionally discrete groups of genes (“regulons”), whose temporal expression occurs in waves. Moreover, its mode of activation (oscillatory or monophasic) plays an important role in determining the spectrum of target genes expressed. By contrast, the noncanonical NF-κB activation pathway involves activating the NF-κB inducing kinase (NIK) to stimulate IKKα-induced phosphorylation and proteolytic processing of the 100-kDa cytoplasmic NF-κB2 precursor. Activated NF-κB2 then forms a complex with Rel B and NIK to translocate into the nucleus thereby activating a distinct set of genes. Although the noncanonical pathway has been most clearly linked to control of adaptive immunity, recent intriguing studies have implicated this pathway in viral induced stress response and in the metabolic syndrome. In this way, a single family of transcription factors can respond to diverse stimuli to regulate cardiovascular homeostasis.

Index Entries

NF-κB/Rel A IκB kinase (IKK) Nuclear factor-κB essential modulator (NEMO) IKKγ canonical pathway noncanonical pathway NF-κB-inducing kinase (NIK) gene networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Siebenlist, U., Franzoso, G., and Brown, K. (1994). Structure, regulation and function of NF-kB. Annu. Rev. Cell Biol. 10:405–455.PubMedCrossRefGoogle Scholar
  2. 2.
    Ghosh, S., May, M.J., and Kopp, E. B., (1998). NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16:225–260.PubMedCrossRefGoogle Scholar
  3. 3.
    Pahl, H. (1999). Activators and target genes of Rel/NF-kB transcription factors. Oncogene 18:6853–6866.PubMedCrossRefGoogle Scholar
  4. 4.
    Tian, B., Nowak, D., and Brasier, A. R. (2005). A TNF induced gene expression program under oscillatory NF-κB control. BMC Genomics 6:137.PubMedCrossRefGoogle Scholar
  5. 5.
    Tian, B., Nowak, D. E., Jamaluddin, M., Wang, S., and Brasier, A. R. (2005). Identification of direct genomic targets downstream of the NF-kappa B transcription factor mediating TNF signaling. J. Biol. Chem. 280:17,435–17,448.Google Scholar
  6. 6.
    Brasier, A. R., Recinos, A. I., and Eledrisi, M. S. (2002). Vascular inflammation and the renin angiotensin system. Arterioscler. Thromb. Vasc. Biol. 22:1257–1266.PubMedCrossRefGoogle Scholar
  7. 7.
    Collins, T. and Cybulsky, M. I. (2001). NF-kappaB: pivotal mediator or innocent bystander in atherogenesis? J. Clin. Invest 107:255–264.PubMedGoogle Scholar
  8. 8.
    Han, Y., Runge, M.S., and Brasier, A. R. (1999). Angiotensin II induces IL-6 transcription in vascular smooth muscle cells through pleiotropic activation of NF-kB transcription factors. Circ. Res. 84:695–703.PubMedGoogle Scholar
  9. 9.
    Brand, K., Page, S., Rogler, G., et al. (1996). Activated transcription factor nuclear factor-kB is present in the atherosclerotic lesion. J. Clin. Invest. 97:1715–1722.PubMedGoogle Scholar
  10. 10.
    O'Donnell, S. M., Hansberger, M. W., Connolly, J. L., et al. (2005). Organ-specific roles for transcription factor NF-κB in reovirus-induced apoptosis and disease. J. Clin. Invest. 115:2341–2350.PubMedCrossRefGoogle Scholar
  11. 11.
    Kawano, S., Kubota, T., Monden, Y., et al. (2005). Blockade of NF-[kappa]B ameliorates myocardial hypertrophy in response to chronic infusion of angiotensin II. Cardiovasc. Res. 67:689–698.PubMedCrossRefGoogle Scholar
  12. 12.
    Levine, B., Kalman, J., Mayer, L., Fillit, H. M., and Packer, M. (1990). Elevated levels of tumor necrosis factor in severe chronic heart failure. N. Engl. J. Med. 323:236–241.PubMedCrossRefGoogle Scholar
  13. 13.
    Jones, W.K., Brown, M., Wilhide, M., He, S., and Ren, X. (2005). NF-kB in cardiovascular disease. Cardiovasc. Toxicol. 5:183–201.PubMedCrossRefGoogle Scholar
  14. 14.
    Karin, M. (1999). The beginning of the end: IkB kinase (IKK) and NF-kB activation. J. Biol. Chem. 274:27,342.CrossRefGoogle Scholar
  15. 15.
    Senftleben, U., Cao, Y., Xiao, G., et al. (2001). Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science 293:1495–1499.PubMedCrossRefGoogle Scholar
  16. 16.
    Beg, A. A., and Baldwin, A. S. J. (1993). The I kappa B proteins: multifunctional regulators of Rel/NF-kappa B transcription factors. Genes Dev. 7:2064–2070.PubMedGoogle Scholar
  17. 17.
    Maniatis, T. (1997). Catalysis by amultiprotein IkB kinase complex. Science 278:818–819.PubMedCrossRefGoogle Scholar
  18. 18.
    Brown, K., Gerstberger, S., Carlson, L., Franzoso, G., and Siebenlist, U. (1995). Control of IkB-alpha proteolysis by site-specific, signal-induced phosphorylation. Science 267: 1485–1488.PubMedCrossRefGoogle Scholar
  19. 19.
    Karin, M. and Ben Neriah, Y. (2000). Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. [Review] [235 refs]. Annu. Rev. Immunol. 18:621–663.PubMedCrossRefGoogle Scholar
  20. 20.
    Han, Y., Weinman, S. A., Boldogh, S., and Brasier, A. R. (1999). TNFα-inducible IkBα proteolysis and NF-kB activation mediated by cytosolic m-Calpain. J. Biol. Chem. 274:787–794.PubMedCrossRefGoogle Scholar
  21. 21.
    Brasier, A. R., Jamaluddin, M., Casola, A., Duan, W., Shen, Q., and Garofalo, R. (1998). A promoter recruitment mechanism for TNFα-induced IL-8 transcription in type II pulmonary epithelial cells: Dependence on nuclear abundance of Rel A, NF-kB1 and c-Rel transcription factors. J. Biol. Chem. 273:3551–3561.PubMedCrossRefGoogle Scholar
  22. 22.
    Sheppard, K. A., Rose, D. W., Haque, Z. K., et al. (1999). Transcriptional activation by NF-kB requires multiple coactivators. Mol. Cell. Biol. 19:6367–6378.PubMedGoogle Scholar
  23. 23.
    Yie, J., Senger, K., and Thanos, D. (1999). Mechanism by which the IFN-beta enhanceosome activates transcription. Proc. Natl. Acad. Sci. USA 96:13,108–13,113.CrossRefGoogle Scholar
  24. 24.
    Poyet, J.-L., Srinivasula, S. M., Lin, J.-H., et al. (2000). Activation of the IkB kinases by RIP via IKKg/NEMO-mediated oligomerization. J. Biol. Chem. 275:37,966–37,977.CrossRefGoogle Scholar
  25. 25.
    Mercurio, F., Murray, B. W., Shevchenko, A., et al. (1999). IkB kinase (IKK)-associated protein 1, a common component of the heterogeneous IKK complex. Mol. Cell. Biol. 19:1526–1538.PubMedGoogle Scholar
  26. 26.
    Bouwmeester, T., Bauch, A., Ruffner, H., et al. (2004). A physical and functional map of the human TNF-[alpha]/NF-[kappa]B signal transduction pathway. Nat. Cell Biol. 6:97–105.PubMedCrossRefGoogle Scholar
  27. 27.
    Mercurio, F., Zhu, H., Murray, B. W., et al. (1997). IKK-1 and IKK-2: cytokine-activated IkB kinases essential for NF-kB activation. Science 278:818–819.CrossRefGoogle Scholar
  28. 28.
    Woronicz J., Gao X, Cao, Z., Rothe, M., and Goeddel, D. V. (1997). IkB kinase-b: NF-kB activation and complex formation with IkB Kinase a and NIK. Science 278: 866–869.PubMedCrossRefGoogle Scholar
  29. 29.
    Yamaoka, S., Courtois, G., Bessia, C., et al. (1998). Complementation cloning of NEMO, a componenet of the IkB kinase complex essential for NF-kB activation. Cell 93: 1231–1240.PubMedCrossRefGoogle Scholar
  30. 30.
    Li, Y., Kang, J., Frieman, J. et al. (1999). Identification of a cell protein (FIP-3) as a modulator of NF-kB activity and as a target of an adenovirus inhibitor of tumor necrosis factor a-induced apoptosis. Proc. Natl. Acad. Sci. USA 96:1042–1047.PubMedCrossRefGoogle Scholar
  31. 31.
    Goshe, M. B., Conrads, T. P., Panisko, E. A., Angell, N. H., Veenstra, T. D., and Smith, R. D. (2001). Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analysis. Anal. Chem. 73:2578–2586.PubMedCrossRefGoogle Scholar
  32. 32.
    Li, Q., Van Antwerp, D., Mercurio, F., Lee, K.-F., and Verma, I. M. (1999). Severe liver degeneration in mice lacking the IkB kinase 2 gene. Science 284:321–325.PubMedCrossRefGoogle Scholar
  33. 33.
    Hu, Y., Baud, V., Delhase, M., et al. (1999). Abnormal morphogenesis but intact IKK activation in mice lacking the IKKalpha subunit of IkappaB kinase [see comments]. Science 284:316–320.PubMedCrossRefGoogle Scholar
  34. 34.
    Huynh, Q. K., Boddupalli, H., Rouw, S. A., et al. (2000). Characterization of the recombinant IKK1/IKK2 heterodimer. Mechanisms regulating kinase activity. J. Biol. Chem. 275:25,883–25,891.CrossRefGoogle Scholar
  35. 35.
    Beg, A. A., Sha, W., Bronson, R. T., Ghosh, S. and Baltimore, D. (1995). Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kB. Nature 376:167–170.PubMedCrossRefGoogle Scholar
  36. 36.
    Delhase, M., Hayakawa, M., Chen, Y., and Karin, M. (1999). Positive and negative regulation of IkB kinase activity through IKKb subunit phosphorylation. Science 284:309–313.PubMedCrossRefGoogle Scholar
  37. 37.
    Rothwarf, D. M., Zandi, E., Natoli, G., and Karin, M. (1998). IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex [see comments]. Nature 395: 297–300.PubMedCrossRefGoogle Scholar
  38. 38.
    Rudolph, D., Yeh, W. C., Wakeham, A., et al. (2000). Severe liver degeneration and lack of NF-kappaB activation in NEMO/IKKgamma-deficient mice. Genes Dev. 14:854–862.PubMedGoogle Scholar
  39. 39.
    Yamamoto, Y., Kim, D. W., Kwak, Y. T., Prajapati, S., Verma, U., and Gaynor, R. B. (2001). IKK gamma/NEMO facilitates the recruitment of the IkappaB proteins into the IkappaB kinase complex. J. Biol. Chem. 276:36,327–36,336.Google Scholar
  40. 40.
    Ye, J., Xie, X., Tarassishin, L., and Horwitz, M. S. (2000). Regulation of the NF-kappaB activation pathway by isolated domains of FIP3/IKK gamma, a component of the IkappaB-alpha kinase complex. J. Biol. Chem. 275:9882–9889.PubMedCrossRefGoogle Scholar
  41. 41.
    Zhang, S. Q., Kovalenko, A., Cantarella, G., and Wallach, D. (2000). Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A 20 bind to NEMO (IKK gamma) upon receptor stimulation. Immunity 12:301–311.PubMedCrossRefGoogle Scholar
  42. 42.
    Wu, C.J., Conze, D.B., Li, T., Srinivasula, S.M., and Ashwell, J.D. (2000). NEMO is a sensor of Lys 63-liked polyubiqui tination and functions in NF-[kappa]B activation. nat. Cell Biol. Epub ahead of print.Google Scholar
  43. 43.
    Malanin, N. L., Boldin, M. P., Kovalenko, A. V., and Wallach, D. (1997). MAP3K-related kinase involved in NF-kB induction by TNF, CD95 and IL-1. Nature 385: 540–544.CrossRefGoogle Scholar
  44. 44.
    Nakano, H., Shindo, M., Sakon, S., et al. (1998). Differential regulation of IkB kinase a and b by two upstream kinases, NF-kB inducing kinase and mitogen-activated protein kinase/erk kinase kinase-1. Proc. Natl. Acad. Sci. USA 95:3537–3542.PubMedCrossRefGoogle Scholar
  45. 45.
    Lin, X., Mu, Y., Cunningham, E.T., Marcu, K. B., Geleziunas, R., and Greene, W. G. (1998). Molecular determinants of NF-kB inducing kinase action. Mol. Cell. Biol. 18:5899–5907.PubMedGoogle Scholar
  46. 46.
    O'Mahony, A., Lin, X., Geleziunas, R., and Greene, W. C. (2000). Activation of the heterodimeric IkB kinase α (IKKα)-IKKβ complex is directional: IKKα regulates IKKβ under both basal and stimulated conditions. Mol. Cell. Biol. 20:1170–1178.PubMedCrossRefGoogle Scholar
  47. 47.
    Takaesu, G., Surabhi, R. M., Park, K. J., Ninomiya-Tsuji, J., Matsumoto, K., and Gaynor, R. B. (2003). TAK1 is critical for IkappaB kinase-mediated activation of the NF-kappaB pathway. J. Mol. Biol. 326:105–115.PubMedCrossRefGoogle Scholar
  48. 48.
    Mizukami, J., Takaesu, G., Akatsuka, H., et al. (2002). Receptor activator of NF-κB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6. Mol. Cell. Biol. 22:992–1000.PubMedCrossRefGoogle Scholar
  49. 49.
    Ninomiya-Tsuhi, J., Kishimoto, K., Hiyama, A., Inoue, J.-I., Cao, Z., and Matsumoto, K. (1999). The kinase TAK1 can activate the NIK-IkB as well as the MAP kinase cascade in the Il-1 signalling pathway. Nature 398:252–256.CrossRefGoogle Scholar
  50. 50.
    Sakurai, H., Miyoshi, H., Toriumi, W., and Sugita, T. (1999). Functional interactions of Transforming Growth Factor b-activated kinase 1 with IkB kinases to stimulate NF-kB activation. J. Biol. Chem. 274:10,641–10,648.Google Scholar
  51. 51.
    Jian, Z., Ninomiya-Tsuji, J., Quian, Y., Matsumoto, K., and Li, X. (2002). Interleukin-1 receptor-associated kinase-dependent IL-1 induced signaling complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol. Mol. Cell. Biol. 22:7158–7167.CrossRefGoogle Scholar
  52. 52.
    Jin, D.-Y., and Jeang, K.-T. (1998). Isolation of full length cDNA and chromosomal localization of human NF-kB modulator NEMO to Xq28. J.. Biomed. Sci. 6:115–120.Google Scholar
  53. 53.
    Courtois, G., Smahi, A., and Israel, A. (2001). NEMO/IKKg: linking NF-kB to human disease. Trends Mol. Med. 7:427–430.PubMedCrossRefGoogle Scholar
  54. 54.
    Hai, T., Yeung, M. L., Wood, T. G., et al. (2006). An alternative splice product of IκB Kinase (IKK)-γ, IKK γ-Δ, differentially mediates cytokine and HTLV-I Taxinduced NF-κB activation. J. Virol. 80:4227–4241.PubMedCrossRefGoogle Scholar
  55. 55.
    Birbach, A., Gold, P., Binder, B. R., Hofer, E., de Martin, R., and Schmid, J. A. (2002). Signaling molecules of the NF-kappa B pathway shuttle constitutively between cytoplasm and nucleus. J. Biol. Chem. 277:10,842–10,851.CrossRefGoogle Scholar
  56. 56.
    Anest, V., Hanson, J. L., Cogswell, P. C., Steinbrecher, K. A., Strahl, B. D., and Baldwin, A. S. (2003). A nucleosomal function for IkappaB kinase-alpha in NF-kappaB-dependent gene expression. [see comment]. Nature 423: 659–663.PubMedCrossRefGoogle Scholar
  57. 57.
    Yamamoto, Y., Verma, U. N., Prajapati, S., Kwak, Y. T., and Gaynor, R. B. 2003. Histone H3 phosphorylation by IKK-alpha is critical for cytokine-induced gene expression. [see comment]. Nature 423: 655–659.PubMedCrossRefGoogle Scholar
  58. 58.
    Verma, U. N., Yamamoto, Y., Prajapati, S., and Gaynor, R. B. (2004). Nuclear role of IKKgamma/NEMO in NF-kappa B-dependent gene expression. J. Biol. Chem. 279:3509–3515.PubMedCrossRefGoogle Scholar
  59. 59.
    Wu, R. C., Qin, J., Hashimoto Y., et al. (2002). Regulation of SRC-3 (pCIP/ACTR/AIB-1/RAC-3/TRAM-1) coactivator activity by IκB kinase. Mol. Cell. Biol. 22: 3549–3561.PubMedCrossRefGoogle Scholar
  60. 60.
    Verma, U. N., Yamamoto, Y., Prajapati, S., and Gaynor, R. B. (2004). Nuclear role of IκB Kinase-γ/NF-κB essential modulator (IKKγ/NEMO) in NF-κB-dependent gene expression. J. Biol. Chem. 279:3509–3515.PubMedCrossRefGoogle Scholar
  61. 61.
    Barnes, P. J. and Karin, M. (1997). Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. [Review] [53 refs]. N. Engl. J. Med. 336:1066–1071.PubMedCrossRefGoogle Scholar
  62. 62.
    Iyer, V. R., Eisen, M. B., Ross, D. T., Schuler, G., et al. (1999). The transcriptional program in the response of human fibroblasts to serum. Science 283:83–87.PubMedCrossRefGoogle Scholar
  63. 63.
    Cardozo, A. K., Hemberg, H., Heremans, Y., et al. (2001). A comprehensive analysis of Cytokine-induced and nuclear factor-kappa B-dependent genes in primary rat panceratic beta-cells. J. Biol. Chem. 276:48,879–48,886.CrossRefGoogle Scholar
  64. 64.
    Cardozo, A. K., Heimberg, H., Heremans, Y., et al. (2001). A comprehensive analysis of cytokine-induced and nuclear factor-kappa B-dependent genes in primary rat pancreatic beta-cells. J. Biol. Chem. 276:48,879–48,886.CrossRefGoogle Scholar
  65. 65.
    Han, Y., Meng, T., Murray, N. R., Fields, A. P., and Brasier, A. R. (1999). IL-1 Induced NF-κB-IκBα autoregulatory feedback loop in hepatocytes: a role for PKCα in post-transcriptional regulation of IkBa resynthesis. J. Biol. Chem. 274:939–947.PubMedCrossRefGoogle Scholar
  66. 66.
    Price, D. H. (2000). P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol. Cell Biol. 20: 2629–2634.PubMedCrossRefGoogle Scholar
  67. 67.
    Zhou, A., Scoggin, S., Gaynor, R. B., and Williams, N. S. (2003). Identification of NF-kappa B-regulated genes induced by TNFalpha utilizing expression profiling and RNA interference. Oncogene 22:2054–2064.PubMedCrossRefGoogle Scholar
  68. 68.
    Kowk, B., Koh, B., Ndubuisi, M., Elofsson, M., and Crews, C. (2001). The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IkB kinase. Chem. Biol. 8:759–766.CrossRefGoogle Scholar
  69. 69.
    Tian, B., Zhang, Y., Luxon, B. A., et al. (2002). Identification of NF-κB dependent gene networks in respiratory syncytial virus-infected cells. J. Virol. 76:6800–6814.PubMedCrossRefGoogle Scholar
  70. 70.
    O'Donnell, S. M., Holm, G., Pierce, J. M., et al. (2006). Identification of an NF-κB-dependent gene network in cells infected by mammalian reovirus. J. Virol. 80:1077–1086.PubMedCrossRefGoogle Scholar
  71. 71.
    Hinz, M., Lemke, P., Anagnostopoulos, I., et al. (2002). Nuclear factor κB-dependent gene expression profiling of Hodgkin's disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J. Exp. Med. 196:605–617.PubMedCrossRefGoogle Scholar
  72. 72.
    Wells, J. and Farnham, P. J. (2002). Characterizing transcription factor binding sites using formaldehyde cross-linking and immunopreciptation. Methods 26:48–56.PubMedCrossRefGoogle Scholar
  73. 73.
    Das, P. M., Ramachandran, K., van Wert, J., and Singal, R. (2004). Chromatin immunoprecipitation assay. Biotechniques 37:961–969.PubMedGoogle Scholar
  74. 74.
    Nowak, D. E., Tian, B., and Brasier, A. R. (2005). Two-step cross-linking method for identification of NF-κB gene network by chromatin immunoprecipitation. Biotechniques 39:715–725.PubMedCrossRefGoogle Scholar
  75. 75.
    Brasier, A. R., Lu, M., Hai, T., Lu, Y., and Boldogh, I. (2001). NF-kB inducible BCL-3 expression is an autoregulatory loop controlling nuclear p50/NF-kB1 residence. J. Biol. Chem. 276:32,080–32,093.CrossRefGoogle Scholar
  76. 76.
    Cui, R., Tieu, B., Recinos, A. I., Tilton, R. G., and Brasier, A. R. (2006). Rho A mediates angiotensin II-induced phospho-Ser536 NF-kB/Re1A subunit exchange on the IL-6 promoter in VSMC. Circ. Res., in press.Google Scholar
  77. 77.
    Whiteside, S. T., Epinat, J.-C., Rice, N. R., and Israel, A. (1997). IkB epsilon, a novel member of the IkB family, controls RelA and cRel NF-kB activity. EMBO J. 16: 1413–1426.PubMedCrossRefGoogle Scholar
  78. 78.
    Wertz, I., O'Rourke, K. M., Zhou, H., et al. (2004). Deubiquitination and ubiquitin ligase domains of A20 down-regulate NF-kB signalling. Nature 430:694–699.PubMedCrossRefGoogle Scholar
  79. 79.
    Bayaert, R., Heyninck, K., and VanHuffel, S. (2000). A20 and A20-binding proteins as cellular inhibitors of Nuclear Factor-kB-dependent gene expression and apoptosis. Biochem. Pharmacol. 60:1143–1151.CrossRefGoogle Scholar
  80. 80.
    Lee, E. G., Boone, D. L., Chai, S., et al. (2000). Failure to regulate TNF-induced NF-kB and cell death responses in A20-deficient mice. Science 289:2350–2354.PubMedCrossRefGoogle Scholar
  81. 81.
    Lipniacki, T., Paszek, P., Brasier, A. R., Luxon, B., and Kimmel, M. (2004). Mathematical model of NF-κB regulatory module. J. Theor. Biol. 228:195–215.PubMedCrossRefGoogle Scholar
  82. 82.
    Chung, J.Y., Park, Y. C., Ye, H., and Wu, H. (2002) All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J. Cell Sci. 115:679–688.PubMedGoogle Scholar
  83. 83.
    Phillips, K., Kedersha, N., Shen, L., Blackshear, P. J., and Anderson, P. (2004). Arthritis suppressor genes TIA-1 and TTP dampen the expression of tumor necrosis factor α, cyclooxygenase 2, and inflammatory arthritis. Proc. Natl. Acad. Sci. 101:2011–2016.PubMedCrossRefGoogle Scholar
  84. 84.
    Carballo, E., Lai, W. S., and Blackshear, P. J. (1998). Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin. Science 281:1001–1005.PubMedCrossRefGoogle Scholar
  85. 85.
    Beutler, B. (1995). TNF, immunity and inflammatory disease: lessons of the past decade. J. Invest. Med. 43: 227–235.Google Scholar
  86. 86.
    Standiford, T. J., Kunkel, S. L., Basha, M. A., et al. (1990). Interleukin-8 gene expression by a pulmonary epithelial cell line: a model for cytokine networks in the lung. J. Clin. Invest. 86:1945–1953.PubMedGoogle Scholar
  87. 87.
    Baggiolini M., Dewald, B., and Moser, B. (1994). Interleukin-8 and related chemotactic cytokines-CXC and CC chemokines. Adv. Immunol. 55:97–179.PubMedCrossRefGoogle Scholar
  88. 88.
    Hromas, R., Gray, P. W., Chantry, D., et al. (1997). Cloning and characterization of exodus a novel β-chemokine. Blood 89:3315–3322.PubMedGoogle Scholar
  89. 89.
    Brasier, A. R., Recinos, A. I., and Eledrisi, M. S. (2005). Mechanisms for vascular inflammation as a cardiovascular risk factor, in Principles of Molecular Cardiology (Runge M. and Patterson, C., eds.) Humana, Totowa, NJ: pp 577–604.Google Scholar
  90. 90.
    Nelson, D. E., Ihekwaba, A. E. C., Elliott, M., et al. (2004). Oscillations in NF-κB signaling control the dynamics of gene expression. Science 306:704–708.PubMedCrossRefGoogle Scholar
  91. 91.
    Han, Y. and Brasier, A.R. (1997). Mechanism for biphasic Rel A:NF-kB1 nuclear translocation in tumor necrosis factor α-stimulated hepatocytes. J. Biol. Chem. 272:9823–9830.Google Scholar
  92. 92.
    Song, H.Y., Rothe, M., and Goeddel, D.V. (1996). The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-kappaB activation. Proc. Natl. Acad. Sci. USA 93:6721–6725.PubMedCrossRefGoogle Scholar
  93. 93.
    Bonizzi, G., and Karin, M. 2004. The two NF-kB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25:280–288.PubMedCrossRefGoogle Scholar
  94. 94.
    Solan, N.J., Miyoshi, H., Carmona, E.M., Bren, G.D., and Pay, C.V. (2002). RelB cellular regulation and transcriptional activity are regulated by p100. J. Biol. Chem. 277:1405–1418.PubMedCrossRefGoogle Scholar
  95. 95.
    Ling, L., Cao, Z., and Goeddel, D.V. (1998). NF-kB induc-ing kinase activates IKKα phosphorylation of Ser-176. Proc. Natl. Acad. Sci. 95:3792–3797.PubMedCrossRefGoogle Scholar
  96. 96.
    Yin, L., Wu, L., Wesche, H., et al. (2001). Defective lymphotoxin-beta receptor-induced NF-kappaB transcriptional activity in NIK-deficient mice. Science 291:2162–2165.PubMedCrossRefGoogle Scholar
  97. 97.
    Morrison, M.D., Reiley, W., Zhang, M., and Sn, S.C. (2005). An atypical tumor necrosis factor (TNF) receptor-associated factor-binding motif of B-cell-activating factor belonging to the TNF family (BAFF) receptor mediates induction of the noncanonical NF-κB signaling pathway. J. Biol. Chem. 280:10,018–10,024.CrossRefGoogle Scholar
  98. 98.
    Sun, S.C., Ganchi, P.A., Ballard, D.W., and Greene, W.C. (1993). NF-kappa B controls expression of inhibitor I kappa B alpha: evidence for an inducible autoregulatory pathway. Science 259:1912–1915.PubMedCrossRefGoogle Scholar
  99. 99.
    Dejardin, E., Droin, N.M., Delhase, M., et al. (2002). The lymphotoxin-[beta]receptor induces different patterns of gene expression via two NF-[kappa]B pathways. Immunity 17:525–535.PubMedCrossRefGoogle Scholar
  100. 100.
    Xiao, G., Harhaj, E.W., and Sun, S.C. (2001). NF-[kappa] B-inducing kinase regulates the procesisng of NF-[kappa] B2 p100. Mol. Cell 7:401–409.PubMedCrossRefGoogle Scholar
  101. 101.
    Xiao, G., Fong, A., and Sun, S.C. (2004). Induction of p100 processing by NF-κB-inducing kinase involves docking IκB kinase α (IKKα) to p100 and IKKα-mediated phosphorylation. J. Biol. Chem. 279:30,099–30,105.Google Scholar
  102. 102.
    Liao, G.X., Zhang, M.Y., Harhaj, E.W., and Sun, S.C. (2004). Regulation of the NF-kappa B-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. J. Biol. Chem. 279:26,243–26,250.Google Scholar
  103. 103.
    Choudhary, S, Boldogh, S., Garofalo, R.P., Jamaluddin, M., and Brasier, A.R. (2005). RSV influences NF-κB dependent gene expression through a novel pathway involving MAP3K14/NIK expression and nuclear complex formation with NF-κB2. J. Virol. 79:8948–8959.PubMedCrossRefGoogle Scholar
  104. 104.
    Ron, D., Brasier, A.R., McGehee, R.E., Jr., and Habener, J.F. (1992). Tumor necrosis factor-induced reversal of adipocytic phenotype of 3T3-L1 cells is preceded by a loss of nuclear CCAAT/enhancer binding protein (C/EBP). J. Clin. Invest. 89:223–233.PubMedGoogle Scholar
  105. 105.
    Suzawa, M., Takada, I., Yanagisawa, J., at al. (2003). Cytokines suppress adipogenesis and PPAR-g function through the TAK1/TAB1/NIK cascade. Nat. Cell Biol. 5:224–230.PubMedCrossRefGoogle Scholar
  106. 106.
    Starkey, J.M., Haidacher, S.J., LeJeune, W.S., et al. (2006). Diabetes-induced activation of canonical and non-canonical nuclear factor-kB pathways in renal cortex. Diabetes, in press.Google Scholar
  107. 107.
    Naumann, M., and Scheidereit, C. (1994). Activation of NF-kB in vivo is regulated by multiple phosphorylations. EMBO J. 13:4597–4607.PubMedGoogle Scholar
  108. 108.
    Duran, A., Diaz-Meco, M.T., and Moscat, J. (2003). Essential role of RelA Ser311 phosphorylation by zetaPKC in NF-kappaB transcriptional activation. EMBO J. 22: 3910–3918.PubMedCrossRefGoogle Scholar
  109. 109.
    Wang, D, Westerheide, S.D., Hanson, J.L., and Baldwin, A.S.J. (2000). TNFalpha-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J. Biol. Chem. 275:32.592–32.597.Google Scholar
  110. 110.
    Sakurai, H., Chiba, H., Miyoshi, H., Sugita, T., and Toriumi, W. (1999). IkappaB kinases phosphorylate NF-kappaB p65 subunit on serine 536 in the transactivation domain. J. Biol. Chem. 274:30,353–30,366.Google Scholar
  111. 111.
    Chen, L.F., Williams, S.A., Mu, Y., et al. (2005). NF-κB RelA phosphorylation regulates RelA acetylation. Mol. Cell. Biol. 25:7966–7975.PubMedCrossRefGoogle Scholar
  112. 112.
    Zhong, H., Voll, R.E., and Ghosh, S. (1998). Phosphorylation of NF-kB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell 1:661–671.PubMedCrossRefGoogle Scholar
  113. 113.
    Zhong, H., May, M.J., Jimi, E., and Ghosh, S. (2002). The phosphorylation status of nuclear NF-[kappa]B determines its association with CBP/p300 or HDAC-1. Mol. Cell 9:625–636.PubMedCrossRefGoogle Scholar
  114. 114.
    Vermeulen, L., De Wilde, G., Van Damme, P., Vanden Berghe, W., and Haegeman, G. (2003). Transcriptional activation of the NF-kappaB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1). EMBO J. 22: 1313–1324.PubMedCrossRefGoogle Scholar
  115. 115.
    Jamaluddin, M., Wang, S., Boldogh, I., Tian, B., and Brasier, A.R. (2006). TNF-α-induced NF-κB/Rel A Ser 276 phosphorylation and enhanceosome formation on the IL-8 promoter is mediated by a reactive oxygen species (ROS)-dependent pathway. Blood, in press.Google Scholar
  116. 116.
    Anrather, J., Acchumi, G., and Iadecola, C. (2005). cis-acting element-specific transcriptioinal activity of differentially phosphorylated nuclear factor-κB. J. Biol. Chem. 280:244–252.PubMedGoogle Scholar
  117. 117.
    Sasaki, C.Y, Barberi, T.J., Ghosh, P., and Longo, D.L. (2005). Phosphorylation of RelA/p65 on serine 536 defines and IκBα-independent NF-κB pathway. J. Biol. Chem. 280:34,538–34,547.CrossRefGoogle Scholar
  118. 118.
    Jamaluddin, M., Chodhary, S., Wang, S., et al. (2005). Respiratory syncytial virus-inducible BLC-3 expression antagonizes the STAT/IRF and NF-kB signaling pathways by inducing histone deacetylase 1 recruitment to the IL-8 promoter. J. Virol. 79:15,302–15,313.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  1. 1.Departments of Internal Medicinethe University of Texas Medical BranchGalveston
  2. 2.Sealy Center for Molecular Medicine, Division of Endocrinology, MRB 8.138The University of Texas Medical BranchGalveston

Personalised recommendations