Cardiovascular Toxicology

, Volume 5, Issue 4, pp 377–389 | Cite as

Cocaine increases intracellular calcium and reactive oxygen species, depolarizes mitochondria, and activates genes associated with heart failure and remodeling

  • Frank A. LattanzioJr.
  • David Tiangco
  • Christopher Osgood
  • Stephen Beebe
  • Julie Kerry
  • Barbara Y. Hargrave
Original Research


To determine the cardiovascular molecular events associated with acute exposure to cocaine, the present study utilized in vivo analysis of left-ventricular heart function in adult rabbits fluorescence confocal microscopy of fluo-2, rhod-2, (5-(and-6) carboxy 2′, 7′ dichlorodihydrofluores-cein diacetate (carboxy-H2DCFDA), and JC-1 in H9C2 cells and gene expression microarray technology for analysis of gene activation in both rabbit ventricular tissue and H9C2 cells. In the rabbit, acute cocaine exposure (2 mg/kg) caused left-ventricular dysfunction and 0.1–10 mM cocaine increased cytosolic and mitochondrial calcium activity and mitochondrial membrane depolarization in H9C2 cells. A 3-min pretreatment of H9C2 cells by 10 μM verapamil, nifedipine, or nadolol inhibited calcium increases, but only 1 mM N-acetylcysteine (NAC) or 1 mM glutathione blocked mitochondrial membrane depolarization. Cocaine induced activation of genes in the rabbit heart and H9C2 cells including angiotensinogen, ADRB1, and c-reactive protein (CRP). In H9C2 cells NAC pretreatment blocked cocaine-mediated increases in CRP, FAS, FAS ligand, and cytokine receptor-like factor 1 (CRLF1) expression. Collectively, these data suggest that acute cocaine administration initiates cellular and genetic changes that, if chronically manifested, could cause cardiac deficits similar to those seen in heart failure and ischemia, such as ventricular dysfunction, cardiac arrhythmias, and cardiac remodeling.


Cocaine Nifedipine Brain Natriuretic Peptide Atrial Natriuretic Peptide H9C2 Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roldan, C.A., Aliabadi, D., and Craford, M.H. (2001). Prevalence of heart disease in asymptomatic chronic cocaine users. Cardiology 95:25–30.PubMedCrossRefGoogle Scholar
  2. 2.
    Lange, R.A., Cigarroa, R.G., Yancy, C.W. Jr., Willard, J.E., Popma, J.J., Sills, M.N., et al. (1989). Cocaine induced coronary artery vasoconstriction. N. Engl. J. Med. 321: 1557–1562.PubMedCrossRefGoogle Scholar
  3. 3.
    Bryne, J.A., Grieve, D.J., Cave, A.C., and Shah, A.M. (2003). Oxidative stress and heart failure. Arch. Mal. Coeur Vaiss. 96:214–221.Google Scholar
  4. 4.
    Nian, M., Lee, P., Khaper, N., and Liu, P. (2004). Inflammatory cytokines and postmyocardial infarction remodeling. Circ. Res. 94:1543–1553.PubMedCrossRefGoogle Scholar
  5. 5.
    Premkumar, L.S. (1999). Selective potentiation of L-type calcium channel currents by cocaine in cardiac myocytes. Mol. Pharmacol. 56:1138–1142.PubMedGoogle Scholar
  6. 6.
    Fantel, A.G., Barber, C.V., Carda, M.B., Tumbic, R.W., and Mackler, B. (1992). Studies of the role of ischemia/reperfusion and superoxide anion radical production in the teratogenicity of cocaine. Tetratology 46:293–300.CrossRefGoogle Scholar
  7. 7.
    Boess, F., Ndikum-Moffor, F.M., Boelsterli, U.A., and Roberts, S.M. (2000). Effects of cocaine and its oxidative metabolites on mitochondrial respiration and generation of reactive oxygen species. Biochem. Pharm., 60:615–623.PubMedCrossRefGoogle Scholar
  8. 8.
    Lahib, R., Abdel-Rahman, M.S., and Turkall, R. (2003). N-acetylcysteine pretreatment decreases cocaine-and endotoxin-induced hepatotoxicity. J. Toxicol. Environ. Health Part A 66:223–239.CrossRefGoogle Scholar
  9. 9.
    Dostanic, S., Servant, N., Wang, C., and Chalifour, L.E. (2004). Chronic beta-adrenoreceptor stimulation in vivo decreased Bcl-2 and increased Bax expression but did not activate apoptotic pathways in mouse heart. Can. J. Physiol. Pharm. 82:167–174.CrossRefGoogle Scholar
  10. 10.
    Lindley, T.E., Doobay, M.F., Sharma, R.V., and Davison, R.L. (2004). Superoxide is involved, in the central nervous system activation and sympatho-excitation of myocardial infarction-induced heart failure. Circ. Res. 94:402–409.PubMedCrossRefGoogle Scholar
  11. 11.
    Lesnefsky, E.J., Chen, Q., Slabe, T.J., Stoll, M.S., Minkler, P.E., Hassan, M.O., et al. (2004). Ischemia, rather than reperfusion, inhibits respiration through cytochrome oxidase in the isolated, perfused rabbit heart: role of cardiolipin. Am. J. Physiol. 287:H258-H267.Google Scholar
  12. 12.
    Hwang, J.-J., Aleen, P.D., Tseng, G.C., Lam, C.-W., Fananapazir, L., Dzau, V.J., and Liew, C.C. (2002). Microarray gene expression profiles in dilated and hypertrophic cardiomyopathic end-stage heart failure. Physiol. Genomics 10:31–44.PubMedGoogle Scholar
  13. 13.
    Steenbergen, C., Afshari, C.A., Petranka, J.G., Collins, J., Martin, K., Bennett, L., et al. (2003). Alterations in apoptotic signaling in human idiopathic cardiomyopathic hearts in failure. Am. J. Physiol. 284:268–276.Google Scholar
  14. 14.
    Hargrave, B.Y., Tiangco, D.A., Lattanzio, F.A., and Beebe, S.J. (2003). Cocaine, not morphine, causes the generation of reactive oxygen species and activation of NF-kappaB in transiently cotransfected heart cells. Cardiovasc., Toxicol. 3:141–151.CrossRefGoogle Scholar
  15. 15.
    Tanhehco, E.J., Yasojima, K., McGeer, P.L., and Lucchesi, B.R. (2000). Acute cocaine exposure upregulates complement expression in rabbit heart. JPET 292:201–208.Google Scholar
  16. 16.
    Williams, D.A., Bowser, D.N., and Petrou, S. (1999). Confocal Ca2+ imaging of organelles, cells, tissues and organs. Methods Enzymol. 307:441–469.PubMedCrossRefGoogle Scholar
  17. 17.
    Tiangco, D.A., Lattanzio, F.A., Osgood, C.J., Beebe, S.J., Kerry, J.A., and Hargrave, B.Y. (2005). 3,4-Methylenedioxymetham phetamine activates nuclear factor-kappa B, increases intracellular calcium, and modulates gene transcription in rat heart Cells. J. Cardiovasc. Toxicol., in press.Google Scholar
  18. 18.
    Bai, H., Otsu, K., Islam, M.N., Kuroki, H., Terada, M., Tada, M., and Wakasugi, C. (1996). Direct cardiotoxic effects of cocaine and cocaethylene on isolated cardiomycytes. Int. J. Cardiol. 53:15–23.PubMedCrossRefGoogle Scholar
  19. 19.
    Moritz, F., Monteil, C., Isabelle, M., Bauer, F., Renet, S., Mulder, P., et al. (2003). Role of reactive oxygen species in cocaine-induced cardiac dysfunction. Cardiovasc. Res. 59:834–843.PubMedCrossRefGoogle Scholar
  20. 20.
    Knuepfer, M.M., Branch, C.A., Gan, Q., and Fischer, V.W. (1993). Cocaine-induced myocardial ultrastrucutral alterations and cardiac output responses in rats. Exp. Mol. Pathol. 59:155–168.PubMedCrossRefGoogle Scholar
  21. 21.
    Leon-Velarde, F., Huicho, L., and Monge, C. (1992). Effects of cocaine on oxygen consumption and mitochondrial respiration in normoxic and hypoxic mice. Life Sci. 50:213–218.PubMedCrossRefGoogle Scholar
  22. 22.
    Li, J.-M., Gall, N.P., Grieve, D.J., Chen, M., and Shah, A.M. (2002). Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension 40:477–484.PubMedCrossRefGoogle Scholar
  23. 23.
    Xiao, Y., He, J., Gilbert, R.D., and Zhang, L. (2000). Cocaine induces apoptosis in fetal myocardial cells through a mitochondria-dependent pathway. JPET 292:8–14.Google Scholar
  24. 24.
    Jaimovich, E. and Carrasco, M.A. (2002). IP3 dependent Ca2+ signals in muscle cells are involved in regulation of gene expression. Biol. Res. 35:195–202.PubMedCrossRefGoogle Scholar
  25. 25.
    Mercier, G., Turque, N., and Schumacher, M. (2001). Early activation of transcription factor expression in Schwann cells by progesterone. Brain. Res. Mol. Brain Res. 97:137–148.PubMedCrossRefGoogle Scholar
  26. 26.
    Hargrave B.Y. and Castle, M.S. (1995). Intrauterine exposure of cocaine increased plasma ANP but did not alter hypoxanthine concentrations in the sheep fetus. Life. Sci. 56:1689–1697.PubMedCrossRefGoogle Scholar
  27. 27.
    Hargrave, B.Y. and Lattanzio, F. (2002). Cocaine activates the rennin angiotensin system in pregnant rabbits and alters the response to ischemia. Cardiovasc. Toxicol. 2:91–97.PubMedCrossRefGoogle Scholar
  28. 28.
    Hwang, I.K., Kang, T.C., Lee, J.C., Park, S.K., An, S.J., Lee, I.S., et al. (2003). Chronological alterations of calbindin D-28k immunoreactivity in the gerbil main olfactory bulb after ischemic insult. Brain Res. 971:250–254.PubMedCrossRefGoogle Scholar
  29. 29.
    Feldhaus, L.M. and Liedtke, A.J. (1998). mRNA expression of glycolytic enzymes and glucose transporter proteins in ischemic myocardium with and without reperfusion. J. Mol. Cell Cardiol. 30:2475–2485.PubMedCrossRefGoogle Scholar
  30. 30.
    Park, J.K., Chung, Y.M., Kang, S., Kim, J.U., Kim, Y.T., Kim, Y.H., et al. (2002). c-Myc exerts a protective function through orinthine decarboxylase against cellular insults. Mol. Pharmacol. 62:1400–1408.PubMedCrossRefGoogle Scholar
  31. 31.
    Buchan, A.M., Lin, C.Y., Choi, J., and Barber, D.L. (2002). Somatostatin, acting at receptor subtype 1, inhibits Rho activity, the assembly of actin stress fibers, and cell migration. J. Biol. Chem. 277:28,431–28,438. Epub 2002 June 3.CrossRefGoogle Scholar
  32. 32.
    Yuferov, V., Kroslak, T., Laforge, K.S., Zhou, Y., Ho, A., and Kreek, M.J. (2003). Differential gene expression in rat caudate putamen after “binge” cocaine administration: advantage of triplicate microarray analysis. Synapse 48:157–169.PubMedCrossRefGoogle Scholar
  33. 33.
    Verma, S., Kuliszewski, M.A., Li, S.H., Szmitko, P.E., Zucco, L., Wang, C.H., et al. (2004). C-Reactive protein attenuates endothelial progenitor cells, survival, differentiation and function: further evidence of a mechanistic link between C-reactive protein and cardiovascular disease. Circulation 109:2058–2967.PubMedCrossRefGoogle Scholar
  34. 34.
    Steenbergen, R., Nanowski, T.S., Beineux, A., Kulinski, A., Young, S.G., and Vance, J.E. (2005). Disruption of phosphatidylserine decarboxylase gene in mice causes embryonic lethality and mitochondrial defect. J. Biol. Chem. Sep. 28; [Epub ahead of print].Google Scholar
  35. 35.
    Yue, T.L., Bao, W., Jucker, B.M., Gu, J.L., Romanic, A.M., Brown, P.J., et al. (2003). Activation of peroxisome proliferator-activated receptor-alpha protects the heart from ischemia/reperfusion injury. Circulation 108:2393–2399. Epub 2003 Oct 13.PubMedCrossRefGoogle Scholar
  36. 36.
    Missouris, C.G., Swift, P.A., and Singer, D.R. (2001). Cocaine use and acute left ventricular dysfunction. Lancet 357:1586.PubMedCrossRefGoogle Scholar
  37. 37.
    Rose, J., Armoundas, A.A., Tian, Y., DiSilvestre, D., Burysek, M., Halperin, V., et al. (2005). Molecular correlates of altered expression of potassium currents in failing rabbit myocardium. Am. J. Physiol. 288:2077–2087.Google Scholar
  38. 38.
    Shanti, C.M. and Lucas, C.E. (2003). Cocaine and the critical care challenge. Crit. Care Med. 31:1851–1859.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Frank A. LattanzioJr.
    • 1
  • David Tiangco
    • 2
  • Christopher Osgood
    • 2
  • Stephen Beebe
    • 1
  • Julie Kerry
    • 1
  • Barbara Y. Hargrave
    • 2
  1. 1.Department of Physiological SciencesEastern Virginia Medical SchoolNorfolk
  2. 2.Dept. of Biological SciencesOld Dominion University, Hampton Blvd.Norfolk

Personalised recommendations