Cardiovascular Toxicology

, Volume 5, Issue 2, pp 95–107 | Cite as

The transcribed genome and the heritable basis of essential hypertension

Original Research

Abstract

Gene expression can be now assessed quantitatively and comprehensively. In addition to reflecting the specialized differentiation of the cell or tissue type from which gene expression is sampled, it also manifests patterns determined by inheritance. Thus gene expression is a phenotypic trait, at least when assessed comprehensively. This trait shows familial aggregation and segregation patterns indicative of an inherited contribution. The molecular evolution of genes includes mutations affecting regulatory sequences in the genome that influence gene expression in cis and in trans. Such mutations may increase in frequency in a population either by genetic drift or by selection. Traits of gene expression, acting alone or in concert with other gene expression traits, may generate phenotypes that extend beyond transcript abundance. Indeed, the divergence of species and the traits that distinguish related species appear to rely importantly on inherited divergence in the control of gene expression. Variation in gene expression may contribute to the pathogenesis of a prevalent human disease trait that shows heritability—essential hypertension. Along with other common heritable diseases, hypertension susceptibility arises from the actions of multiple genome sequence variations. the identity of such variation has proven elusive when sought by methods that have been successfully applied to Mendelian diseases. This review explores the potential to uncover hypertension genes by exploiting quantitative variation in the heritable control of gene expression.

Key Words

Gene expression profiling gene arrays proteomics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Staessen, J.A., Wang, J. Bianchi, G., and Birkenhager, W.H. (2003). Essential hypertension. Lancet 361:1629–1641.PubMedCrossRefGoogle Scholar
  2. 2.
    Pourmand, N., Elahi, E., Davis, R.W., and Ronaghi, M. (2002). Multiplex pyrosequencing. Nucleic Acids Res. 30: e31.PubMedCrossRefGoogle Scholar
  3. 3.
    Hardenbol, P., Baner, J., Jain, M., Nilsson, M., Namsaraev, E.A., Karlin-Neumann, G.A., et al. (2003). Multiplexed genotyping with sequence-tagged molecular inversion probes. Nat. Biotechnol. 21:673–678.PubMedCrossRefGoogle Scholar
  4. 4.
    Fakhrai-Rad, H., Zheng, J., Willis, T.D., Wong, K., Suyenaga, K., Moorhead, M., et al. (2004). SNP discovery in pooled samples with mismatch repair detection. Genome Res. 14:1404–1412.PubMedCrossRefGoogle Scholar
  5. 5.
    Bray, M.S. and Doris, P.A. (2003). Genotyping by mass spectrometry. Genet. Eng. (NY) 25:1–14.Google Scholar
  6. 6.
    Kennedy, G.C., Matsuzaki, H., Dong, S., Liu, W.M., Huang, J., Liu, G., et al. (2003). Large-scale genotyping of complex DNA. Nat. Biotechnol. 21:1233–1237.PubMedCrossRefGoogle Scholar
  7. 7.
    Morris, A., Pedder, A., and Ayres, K. (2003). Linkage disequilibrium assessment via log,-linear modeling of SNP haplotype frequencies. Genet Epidemiol. 25:106–114.PubMedCrossRefGoogle Scholar
  8. 8.
    Adkins, R.M. (2004). Comparison of the accuracy of methods of computational haplotype inference using a large empirical dataset. BMC Genet. 5:22.PubMedCrossRefGoogle Scholar
  9. 9.
    Seltman, H., Roeder, K., and Devlin, B. (2003). Evolutionary-based association analysis using haplotype data. Genet. Epidemiol. 25:48–58.PubMedCrossRefGoogle Scholar
  10. 10.
    Doris, P.A. (2002). Hypertension genetics, single nucleotide polymorphisms, and the common disease: common variant hypothesis. Hypertension. 39:323–331.PubMedCrossRefGoogle Scholar
  11. 11.
    Guyton, A.C. (1992). Kidneys and fluids in pressure regulation. Hypertension. 19(Suppl. I):12–18.Google Scholar
  12. 12.
    Guyton, A.C. (1991). Blood pressure control—special role of the kidney and body fluids. Science. 252:1813–1816.PubMedCrossRefGoogle Scholar
  13. 13.
    Hall, J.E., Guyton, A.C., and Brands, M.W. (1996). Pressure-volume regulation in hypertension. Kidney Int. 49: S35-S41.Google Scholar
  14. 14.
    Frey, B.A., Grisk, O., Bandelow, N., Wussow, S., Bie, P., and Rettig, R. (2000). Sodium homeostasis in transplanted rats with a spontaneously hypertensive rat kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279:R1099-R1104.PubMedGoogle Scholar
  15. 15.
    Grisk, O. and Rettig, R. (2001). Renal transplantation studies in genetic hypertension. News Physiol. Sci. 16:262–265.PubMedGoogle Scholar
  16. 16.
    Grisk, O., Kloting, I. Exner, J., Spiess, S., Schmidt, R., Junghans, D., et al. (2002). Long-term arterial pressure in spontaneously hypertensive rats is set by the kidney. J. Hypertens. 20:131–138.PubMedCrossRefGoogle Scholar
  17. 17.
    Rettig, R., Folberth, C.G., Graf, C., Kopf, D., Stauss, H., and Unger, T. (1991). Are renal mechanisms involved in primary hypertension? Evidence from kidney transplantation studies in rats.. Klinische Wochenschrift 69:597–602.PubMedCrossRefGoogle Scholar
  18. 18.
    Rettig, R., Bandelow, N., Patschan, O., Kuttler, B., Frey, B., and Uber, A. (1996). The importance of the kidney in primary hypertension: insights from cross-transplantation. J. Hum. Hypertens. 10:641–644.PubMedGoogle Scholar
  19. 19.
    Rettig, R., Schmitt, B., Pelzl, B., and Speck, T. (1993). The kidney and primary hypertension: contributions from renal transplantation studies in animals and humans. J. Hypertens. 11:883–891.PubMedCrossRefGoogle Scholar
  20. 20.
    Curtis, J.J., Luke, R.G., Dustan, H.P., Kashgarian, M., Whelchel, J.D., Jones, P., et al. (1983). Remission of essential hypertension after renal transplantation. N. Engl. J. Med. 309:1009–1015.PubMedGoogle Scholar
  21. 21.
    First, M.R., Neylan, J.F., Rocher, L.L., and Tejani, A. (1994). Hypertension after renal transplantation. J. Am. Soc. Nephrol. 4(Suppl. 1):S30-S36.PubMedGoogle Scholar
  22. 22.
    Lifton, R.P. (1996). Molecular genetics of human blood pressure variation. Science. 272:676–680.PubMedCrossRefGoogle Scholar
  23. 23.
    Lifton, R.P., Wilson, F.H., Choate, K.A., and Geller, D.S. (2002). Salt and blood pressure: new insight from human genetic studies. Cold Spring Harb. Symp. Quant. Biol. 67: 445–450.PubMedCrossRefGoogle Scholar
  24. 24.
    Lorenz, J.N., Schultheis, P.J., Traynor, T., Shull, G.E., and Schnermann, J. (1999). Micropuncture analysis of single-nephron function in NHE3-deficient mice. Am. J. Physiol. 277:F447-F453.PubMedGoogle Scholar
  25. 25.
    Schultheis, P.J., Clarke, L.L., Meneton, P., Miller, M.L., Soleimani, M., Gawenis, L.R., et al. (1998). Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat. Genet. 19:282–285.PubMedCrossRefGoogle Scholar
  26. 26.
    King, M.C. and Wilson, A.C. (1975). Evolution, at two levels in humans and chimpanzees. Science 188:107–116.PubMedCrossRefGoogle Scholar
  27. 27.
    Enard, W., Khaitovich, P., Klose, J., Zollner, S., Heissig, F., Giavalisco, P., et al. (2002). Intra- and interspecific variation in primate gene expression patterns. Science 296: 340–343.PubMedCrossRefGoogle Scholar
  28. 28.
    Rockman, M.V. and Wray, G.A. (2002). Abundant raw material forcis-regulatory evolution in humans. Mol. Biol. Evol. 19:1991–2004.PubMedGoogle Scholar
  29. 29.
    Rockman, M.V., Hahn, M.W., Soranzo, N., Goldstein, D.B., and Wray, G.A. (2003). Positive selection on a human-specific transcription factor binding site regulating IL4 expression. Curr. Biol. 13:2118–2123.PubMedCrossRefGoogle Scholar
  30. 30.
    Hahn, M.W., Rockman, M.V., Soranzo, N., Goldstein, D.B., and Wray, G.A. (2004). Population genetic and phylogenetic evidence for positive selection on regulatory mutations at the factor VII locus in humans. Genetics 167: 867–877.PubMedCrossRefGoogle Scholar
  31. 31.
    Rockman, M.V., Hahn, M.W., Soranzo, N., Loisel, D.A., Goldstein, D.B., and Wray, G.A. (2004). Positive selection on MMP3 regulation has shaped heart disease risk. Curr. Biol. 14:1531–1539.PubMedCrossRefGoogle Scholar
  32. 32.
    Brem, R.B., Yvert, G., Clinton, R., and Kruglyak, L. (2002). Genetic dissection of transcriptional regulation in budding yeast. Science 296:752–755.PubMedCrossRefGoogle Scholar
  33. 33.
    Monks, S.A., Leonardson, A., Zhu, H., Cundiff, P., Pietrusiak, P., Edwards, S., et al. (2004). Genetic inheritance of gene expression in human cell lines. Am. J. Hum. Genet. 75:1094–1105.PubMedCrossRefGoogle Scholar
  34. 34.
    Morley, M., Molony, C.M., Weber, T.M., Devlin, J.L., Ewens., K.G., Spielman, R.S., et al. (2004). Genetic analysis of genome-wide variation in human gene expression. Nature 430:743–747.PubMedCrossRefGoogle Scholar
  35. 35.
    Schadt, E.E., Monks, S.A., Drake, T.A., Lusis, A.J., Che, N., Colinayo, V., et al. (2003). Genetics of gene expression surveyed in maize, mouse and man. Nature 422: 297–302.PubMedCrossRefGoogle Scholar
  36. 36.
    Yvert, G., Brem, R.B., Whittle, J., Akey, J.M., Foss, E., Smith, E.N., et al. (2003). Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat. Genet. 35:57–64.PubMedCrossRefGoogle Scholar
  37. 37.
    Wang, M., Lemon, W.J., Liu, G., Wang, Y., Iraqi, F.A., Malkinson, A.M., et al. (2003). Fine mapping and identification of candidate pulmonary adenoma susceptibility 1 genes using advanced intercross lines. Cancer Res. 63: 3317–3324.PubMedGoogle Scholar
  38. 38.
    Lemon, W.J., Swinton, C.H., Wang, M., Berbari, N., Wang, Y., and You, M. (2003). Single nucleotide polymorphism (SNP) analysis of mouse pulmonary adenoma susceptibility loci 1–4 for identification of candidate genes. J. Med. Genet. 40:e36.PubMedCrossRefGoogle Scholar
  39. 39.
    Lemon, W.J., Bernert, H., Sun, H., Wang, Y., and You, M. (2002). Identification of candidate lung cancer susceptibility genes in mouse using oligonucleotide arrays. J. Med. Genet. 39:644–655.PubMedCrossRefGoogle Scholar
  40. 40.
    Aitman, T.J., Glazier, A.M., Wallace, C.A., Cooper, L.D., Norsworthy, P.J., Wahid, F.N., et al. (1999). Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensiverats. Nat. Genet. 21:76–83.PubMedCrossRefGoogle Scholar
  41. 41.
    Eaves, I.A., Wicker, L.S., Ghandour, G., Lyons, P.A., Peterson, L.B., Todd, J.A., et al. (2002). Combining mouse congenic strains and microarray gene expression analyses to study a complex trait: the NOD model of type 1 diabetes. Genome Res. 12:232–243.PubMedCrossRefGoogle Scholar
  42. 42.
    Wicker, L.S., Chamberlain, G., Hunter, K., Rainbow, D., Howlett, S., Tiffen, P., et al. (2004). Fine mapping, gene content, comparative sequencing, and expression analyses support Ctla4 and Nramp1 as candidates for Idd5.1 and Idd5.2 in the nonobese diabetic mouse. J. Immunol. 173: 164–173.PubMedGoogle Scholar
  43. 43.
    Karp, C.L., Grupe, A., Schadt, E., Ewart, S.L., Keane-Moore, M., Cuomo, P.J., et al. (2000). Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma. Nat. Immunol. 1:221–226.PubMedCrossRefGoogle Scholar
  44. 44.
    Aitman, T.J., Gotoda, T., Evans, A.L., Imrie, H., Heath, K.E., Trembling, P.M., et al. (1997). Quantitative trait loci for cellular defects in glucose and fatty acid metabolism in hypertensive rats. Nat. Genet. 16:197–201.PubMedCrossRefGoogle Scholar
  45. 45.
    Pravenec, M., Zidek, V., Simakova, M., Kren, V., Krenova, D., Horky, K., et al. (1999). Genetics of Cd36 and the clustering of multiple cardiovascular risk factors in spontaneous hypertension. J. Clin. Invest. 103:1651–1657.PubMedGoogle Scholar
  46. 46.
    Glazier, A.M., Scott, J., and Aitman, T.J., (2002). Molecular basis of the Cd36 chromosomal deletion underlying SHR defects in insulin action and fatty acid metabolism. Mamm. Genome. 13:108–113.PubMedCrossRefGoogle Scholar
  47. 47.
    Pravenec, M., Landa, V., Zidek, V., Musilova, A., Kren, V., Kazdova, L., et al. (2001). Transgenic rescue of defective Cd36 ameliorates insulin resistance in spontaneously hypertensive rats. Nat. Genet. 27:156–158.PubMedCrossRefGoogle Scholar
  48. 48.
    Louis, W.J. and Howes, L.G. (1990). Genealogy of the spontaneously hypertensive rat and Wistar-Kyoto rat strains: implications for studies of inherited hypertension. J. Cardiovasc. Pharmacol. 16(Suppl. 7):S1-S5.PubMedGoogle Scholar
  49. 49.
    Okamoto, K. and Aoki, K. (1963). Development of a strain of spontaneously hypertensive rats. Jpn. Circ. J. 27:282–293.PubMedGoogle Scholar
  50. 50.
    Okamoto, K., Yamori, Y., and Nagaoka, A. (1974). Establishment of the stroke-prone spontaneously hypertensive rat. Circ. Res. 34/35:I-143–I-153.Google Scholar
  51. 51.
    Fornage, M., Hinojos, C.A., Nurowska, B.W., Boerwinkle, E., Hammock, B.D., Morisseau, C.H., et al. (2002). Polymorphism in soluble epoxide hydrolase and blood pressure in spontaneously hypertensive rats. Hypertension 40:485–490.PubMedCrossRefGoogle Scholar
  52. 52.
    Roman, R.J., Maier, K.G., Sun, C.W., Harder, D.R., and Alonso-Galicia, M. (2000). Renal and cardiovascular actions of 20-hydroxyeicosatetraenoic acid and epoxy-eicosatrienoic acids. Clin. Exp. Pharmacol. Physiol. 27: 855–865.PubMedCrossRefGoogle Scholar
  53. 53.
    Escalante, B., Erlij, D., Falck, J.R., and McGiff, J.C. (1991). Effect of cytochrome P450 arachidonate metabolites on ion transport in rabbit kidney loop of Henle. Science 251: 799–802.PubMedCrossRefGoogle Scholar
  54. 54.
    Satoh, T., Cohen, H.T., and Katz, A.I. (1993). Intracellular signaling in the regulation of renal Na−K-ATPase. II. Role of eicosanoids. J. Clin. Invest. 91:409–415.PubMedCrossRefGoogle Scholar
  55. 55.
    Sandberg, M. and Meijer, J. (1996). Structural characterization of the human soluble epoxide hydrolase gene (EPHX2). Biochem. Biophys. Res. Commun. 221:333–339.PubMedCrossRefGoogle Scholar
  56. 56.
    Argiriadi, M.A., Morisseau, C., Hammock, B.D., and Christianson, D.W. (1999). Detoxification of environmental mutagens and carcinogens: structure, mechanism, and evolution of liver epoxide hydrolase. Proc. Natl. Acad. Sci. USA 96:10,637–10,642.CrossRefGoogle Scholar
  57. 57.
    Newman, J.W., Morisseau, C. Harris, T.R., and Hammock, B.D. (2003). The soluble epoxide hydrolase encoded by EPXH2 is a bifunctional enzyme with novel lipid phosphate phosphatase activity. Proc. Natl. Acad. Sci. USA 100: 1558–1563.PubMedCrossRefGoogle Scholar
  58. 58.
    Cronin, A., Mowbray, S., Durk, H., Homburg, S., Fleming, I., Fisslthaler, B., et al. (2003). The N-terminal domain of mammalian soluble epoxide hydrolase is a phosphatase. Proc. Natl. Acad. Sci. USA 100:1552–1557.PubMedCrossRefGoogle Scholar
  59. 59.
    Sandberg, M., Hassett, C., Adman, E.T., Meijer, J., and Omiecinski, C.J. (2000). Identification and functional characterization of human soluble epoxide hydrolase genetic polymorphisms. J. Biol. Chem. 275:28,873–28,881.CrossRefGoogle Scholar
  60. 60.
    Przybyla-Zawislak, B.D., Srivastava, P.K., Vazquez-Matias, J., Mohrenweiser, H.W., Maxwell, J.E., Hammock, B.D., et al. (2003). Polymorphisms in human soluble epoxide hydrolase. Mol. Pharmacol. 64:482–490.PubMedCrossRefGoogle Scholar
  61. 61.
    Srivastava, P.K., Sharma, V.K., Kalonia, D.S., and Grant, D.F. (2004). Polymorphisms in human soluble epoxide hydrolase: effects on enzyme activity, enzyme stability, and quaternary structure. Arch. Biochem. Biophys. 427:164–169.PubMedCrossRefGoogle Scholar
  62. 62.
    Sato, K., Emi, M., Ezura, Y., Fujita, Y., Takada, D., Ishigami, T., et al. (2004). Soluble epoxide hydrolase variant (Glu287Arg) modifies plasma total cholesterol and triglyceride phenotype in familial hypercholesterolemia: intrafamilial association study in an eight-generation hyperlipidemic kindred. J. Hum. Genet. 49:29–34.PubMedCrossRefGoogle Scholar
  63. 63.
    Fornage, M., Boerwinkle, E., Doris, P.A.., Jacobs, D., Liu, K., and Wong, N.D. (2004). Polymorphism of the soluble epoxide hydrolase is associated with coronary artery calcification in African-American subjects: the Coronary Artery Risk Development in Young Adults (CARDIA) study. Circulation 109:335–339.PubMedCrossRefGoogle Scholar
  64. 64.
    Gu, W., Li, X., Lau, K.H., Edderkaoui, B., Donahae, L.R., Rosen, C.J., et al. (2002). Gene expression between a congenic strain that contains a quantitative trait locus of high bone density from CAST/EiJ and its wild-type strain C57BL/6J. Funct. Integr. Genomics 1:375–386.PubMedCrossRefGoogle Scholar
  65. 65.
    McBride, M.W., Carr, F.J., Graham, D., Anderson, N.H., Clark, J.S., Lee, W.K., et al. (2003). Microarray analysis of rat chromosome 2 congenic strains. Hypertension 41: 847–853.PubMedCrossRefGoogle Scholar
  66. 66.
    Vaziri., N.D., Wang, X.Q., Oveisi, F., and Rad, B. (2000). Induction of oxidative stress by glutathione depletion causes severe hypertension in normal rats. Hypertension 36:142–146.PubMedGoogle Scholar
  67. 67.
    Rodriguez-Iturbe B., Vaziri, N.D., Herrera-Acosta, J., and Johnson, R.J. (2004). Oxidative stress, renal infiltration of immune cells, and salt-sensitive hypertension: all for one and one for all. Am. J. Physiol. Renal Physiol. 286:F606-F616.PubMedCrossRefGoogle Scholar
  68. 68.
    Chon, H., Gaillard, C.A., van der Meijden, B.B., Dijstelbloem, H.M., Kraaijenhagen, R.J., van Leenen, D., et al. (2004). Broadly altered gene expression in blood leukocytes in essential hypertension is absent during treatment. Hypertension 43:947–951.PubMedCrossRefGoogle Scholar
  69. 69.
    Tian, Q., Stepaniants, S.B., Mao, M., Weng, L., Feetham, M.C., Doyle, M.J., et al. (2004). Integrated genomic and proteomic analyses of gene expression in mammalian cells. Mol. Cell. Proteomics 3:960–969.PubMedCrossRefGoogle Scholar
  70. 70.
    Cardozo, A.K., Berthou, L., Kruhoffer, M., Orntoft, T., Nicolls, M.R., and Eizirik, D.L. (2003). Gene microarray study corroborates proteomic findings in rodent islet cells. J. Proteome Res. 2:553–555.PubMedCrossRefGoogle Scholar
  71. 71.
    Gygi, S.P., Rochon, Y., Franza, B.R., and Aebersold, R. (1999). Correlation between protein and mRNA abundance in yeast. Mol. Cell Biol. 19:1720–1730.PubMedGoogle Scholar
  72. 72.
    Griffin, T.J., Gygi, S.P., Ideker, T., Rist, B., Eng, J., Hood, L., et al. (2002). Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol. Cell. Proteomics 1:323–333.PubMedCrossRefGoogle Scholar
  73. 73.
    Ideker, T., Thorsson, V., Ranish, J.A., Christmas, R., Buhler, J., Eng, J.K., et al. (2001). Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292:929–934.PubMedCrossRefGoogle Scholar
  74. 74.
    Alban, A. David, S.O., Bjorkesten, L., Andersson, C., Sloge, E., Lewis, S., et al. (2003). A novel experimental design for comparative two-dimensional gel analysis: Two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3:36–44.PubMedCrossRefGoogle Scholar
  75. 75.
    Gygi, S.P., Rist, B., Griffin, T.J., Eng, J., and Aebersold, R. (2002). Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags. J. Proteome Res. 1:47–54.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  1. 1.Institute of Molecular MedicineUniversity of TexasHouston

Personalised recommendations