Advertisement

Cardiovascular Toxicology

, Volume 3, Issue 2, pp 101–117 | Cite as

Matrix-degrading and pro-inflammatory changes in human vascular endothelial cells exposed to cigarette smoke condensate

  • Brian K. Nordskog
  • Allison D. Blixt
  • Walter T. Morgan
  • Wanda R. Fields
  • Gary M. Hellmann
Article

Abstract

Cigarette smoking has been associated with an increase in the severity and prevalence of atherosclerosis in the abdominal aorta. To begin our investigation ofthis finding, we used an integrated approach combining gene expression profiling, protein analysis, cytokine measurements, and cytotoxicity determinations to examine molecular responses of cultured human aortic and coronary endothelial cells exposed to cigarette smoke condensate (CSC) and nicotine. Exposure of endothelial cells to CSC (30 and 60 μg/mL TPM) for 24 h resulted in minimal cytotoxicity, and the upregulation of genes involved in matrix degradation (MMP-1, MMP-8, and MMP-9), xenobiotic metabolism (HO-1 and CYP1A2), and downregulation of genes involved in cell cycle regulation (including TOP2A, CCNB1, CCNA, CDKN3). Exposure of cells to a high physiological concentration of nicotine resulted in few differentially expressed genes. Immunoblot analysis of proteins selected from genes shown to be differentially regulated by microarray analysis revealed similar responses. Finally, a number of inflammatory cytokines measured in culture media were elevated in response to CSC. Together, these results describe a complex proinflammatory response, possibly mediating the recruitment of leukocytes through cytokine signaling. Additionally, fibrous cap destabilization may be facilitated by matrix metalloproteinase upregulation.

Key words

Atherosclerosis endothelial cells gene expression profiling matrix metalloproteinase-1 MMP-1 heme oxygenase-1 HO-1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ross, R. (1999). Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340:115–126.PubMedCrossRefGoogle Scholar
  2. 2.
    Stary, H.C. (1989). Evolution and progression of atherosclerotic lesions in coronary arteries of children and young adults. Arteriosclerosis 9(Suppl I):19–32.Google Scholar
  3. 3.
    Hopkins, P.N. and Williams, R.R. (1981). A survey of 246 suggested coronary risk factors. Atherosclerosis 40:1–52.PubMedCrossRefGoogle Scholar
  4. 4.
    Kannel, W.B., McGee, D.L., and Castelli, W.P. (1984). Latest perspectives on cigarette smoking and cardiovascular disease: the Framingham study. J. Cardiac. Rehabil. 4: 267–277.Google Scholar
  5. 5.
    US Department of Health and Human Services, Public Health Service, and Office on Smoking and Health. (1983). The health consequences of smoking: Cardiovascular Disease. A report of the Surgeon General. DHHS Publication (PHS) 84-50204.Google Scholar
  6. 6.
    McGill, H.C. Jr., McMahan, C.A., Zieske, A.W., Malcom, G.T., Tracy, R.E., and Strong, J.P. (2001). Effects of nonlipid risk factors on atherosclerosis in youth with a favorable lipoprotein profile. Circulation 103:1546–1550.PubMedGoogle Scholar
  7. 7.
    Mullick, A.E., McDonald, J.M., Melkonian, G., Talbot, P., Pinkerton, K.E., and Rutledge, J.C. (2002). Reactive carbonyls from tobacco smoke increase arterial endothelial layer injury. Am. J. Physiol. Heart Circ. Physiol. 283: H591-H597.PubMedGoogle Scholar
  8. 8.
    Eiserich, J.P., der Vliet, A., Handelman, G.J., Halliwell, B., and Cross, C.E. (1995). Dietary antioxidants and cigarette smoke-induced biomolecular damage: a complex interaction. Am. J. Clin. Nutr. 62:1490S-1500S.PubMedGoogle Scholar
  9. 9.
    Lin, S.J., Hong, C.Y., Chang, M.S., Chiang, B.N., and Chien, S. (1992). Long-term nicotine exposure increases aortic endothelial cell death and enhances transendothelial macromolecular transport in rats. Arterioscler. Thromb. 12:1305–1312.PubMedGoogle Scholar
  10. 10.
    Benowitz, N.L. (1997). The role of nicotine in smoking-related cardiovascular disease. Prev. Med. 26:412–417.PubMedCrossRefGoogle Scholar
  11. 11.
    Barbour, S.E., Nakashima, K., Zhang, J.B., Tangada, S., Hahn, C.L., Schenkein, H.A., and Tew, J.G. (1997). Tobacco and smoking: environmental factors that modify the host response (immune system) and have an impact on periodontal health. Crit. Rev. Oral Biol. Med. 8:437–460.PubMedCrossRefGoogle Scholar
  12. 12.
    Blann, A.D., Seigneur, M., Adams, R.A., and McCollum, C.N. (1996). Neutrophil elastase, von Willebrand factor, soluble thrombomodulin and percutaneous oxygen in peripheral atherosclerosis. Eur. J. Vasc. Endovasc. Surg. 12:218–222.PubMedCrossRefGoogle Scholar
  13. 13.
    Babior, B.M. (2000). Phagocytes and oxidative stress. Am. J. Med. 109:33–44.PubMedCrossRefGoogle Scholar
  14. 14.
    Blann, A.D., Kirkpatrick, U., Devine, C., Naser, S., and McCollum, C.N. (1998). The influence of acute smoking on leucocytes, platelets and the endothelium. Atherosclerosis 141:133–139.PubMedCrossRefGoogle Scholar
  15. 15.
    Weber, C., Erl, W., Weber, K., and Weber, P.C. (1996). Increased adhesiveness of isolated monocytes to endothelium is prevented by vitamin C intake in smokers. Circulation 93:1488–1492.PubMedGoogle Scholar
  16. 16.
    Freed, B.M., Ouyang, Y., and McCue, J.M. (2001). Mechanisms of altered transcription by cigarette smoke. Toxicol. Sci. 59:1–2.PubMedCrossRefGoogle Scholar
  17. 17.
    Bosio, A., Knorr, C., Janssen, U., Gebel, S., Haussmann, H.J., and Muller, T. (2002). Kinetics of gene expression profiling in Swiss 3T3 cells exposed to aqueous extracts of cigarette smoke. Carcinogenesis 23:741–748.PubMedCrossRefGoogle Scholar
  18. 18.
    Freeman, D.J. and Packard, C.J. (1995). Smoking and plasma lipoprotein metabolism. Clin. Sci. (Lond) 89:333–342.Google Scholar
  19. 19.
    Green, C.R. and Rodgman, A. (1996). The Tobacco Chemists' Research Conference: A half century forum for advances in analytical methodology of tobacco and its products. Rec. Adv. Tob. Sci. 22:131–304.Google Scholar
  20. 20.
    Hoffman, D. and Hoffmann, I. (1998). Chemistry and toxicology. In Cigars: Health Effects and Trends. NIH Publication no. 98-4302.Google Scholar
  21. 21.
    Zhang, S., Day, I.N.M., and Ye, S. (2001). Microarray analysis of nicotine-induced changes in gene expression in endothelial cells. Physiol. Genom. 5:187–192.Google Scholar
  22. 22.
    Diana, J.N. and Vaught, A. (1990). Research Cigarettes. The University of Kentucky Printing Services. Lexington, KY.Google Scholar
  23. 23.
    Bombick, B.R., Murli, H., Avalos, J.T., Bombick, D.W., Morgan, W.T., Putnam, K.P., and Doolittle, D.J. (1998). Chemical and biological studies of a new cigarette that primarily heats tobacco. Part 2. In vitro toxicology of mainstream smoke condensate. Food Chem. Toxicol. 36: 183–190.PubMedCrossRefGoogle Scholar
  24. 24.
    Hellmann, G.M., Fields, W.R., and Doolittle, D.J. (2001). Gene expression profiling of cultured human bronchial epithelial and lung carcinoma cells. Toxicol. Sci. 61:154–163.PubMedCrossRefGoogle Scholar
  25. 25.
    Reagan, J.W. Jr., Hubbert, M.L., and Shelness, G.S. (2000). Posttranslational regulation of acid sphingomyelinase in niemann-pick type C1 fibroblasts and free cholesterol-enriched chinese hamster ovary cells. J. Biol. Chem. 275: 38104–38110.PubMedCrossRefGoogle Scholar
  26. 26.
    Pittilo, R.M., Mackie, I.J., Rowles, P.M., Machin, S.J. and Woolf, N. (1982). Effects of cigarette smoking on the ultrastructure of rat thoracic aorta and its ability to produce prostacyclin. Thromb. Haemost. 48:173–176.PubMedGoogle Scholar
  27. 27.
    Johnson, J.L., Jackson, C.L., Angelini, G.D., and George, S.J. (1998). Activation of matrix-degrading metalloproteinases by mast cell proteases in atherosclerotic plaques. Arterioscler. Thromb. Vasc. Biol. 18:1707–1715.PubMedGoogle Scholar
  28. 28.
    Smith, C.J. and Fischer, T.H. (2001). Particulate and vapor phase constituents of cigarette mainstream smoke and risk of myocardial infarction. Atherosclerosis 158:257–267.PubMedCrossRefGoogle Scholar
  29. 29.
    Galis, Z.S., Sukhova, G.K., Lark, M.W., and Libby, P. (1994). Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J. Clin. Invest. 94:2493–2503.PubMedCrossRefGoogle Scholar
  30. 30.
    Sukhova, G.K., Schonbeck, U., Rabkin, E., Schoen, F.J., Poole, A.R., Billinghurst, R.C., and Libby, P. (1999). Evidence for increased collagenolysis by interstitial collagenases-1 and-3 in vulnerable human atheromatous plaques. Circulation 99:2503–2509.PubMedGoogle Scholar
  31. 31.
    Galis, Z.S., Muszynski, M., Sukhova, G.K., Simon-Morrissey, E., Unemori, E.N., Lark, M.W., Amento, E., and Libby, P. (1994). Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ. Res. 75: 181–189.PubMedGoogle Scholar
  32. 32.
    Huang, Y., Song, L., Wu, S., Fan, F., and Lopes-Virella, M.F. (2001). Oxidized LDL differentially regulates MMP-I and TIMP-1 expression in vascular endothelial cells. Atherosclerosis 156:119–125.PubMedCrossRefGoogle Scholar
  33. 33.
    Church, R.L., Bauer, E.A., and Eisen, A.Z. (1983). Human skin collagenase: assignment of the structural gene to chromosome 11 in both normal and recessive dystrophic epidermolysis bullosa cells using human-mouse somatic cell hybrids. Coll. Relat. Res. 3:115–124.PubMedGoogle Scholar
  34. 34.
    Rutter, J.L., Mitchell, T.I., Buttice, G., Meyers, J., Gusella, J.F., Ozelius, L.J., and Brinckerhoff, C.E. (1998). A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter creates an Ets binding site and augments transcription. Cancer Res. 58:5321–5325.PubMedGoogle Scholar
  35. 35.
    Ghilardi, G., Biondi, M.L., DeMonti, M., Turri, O., Guagnellini, E., and Scorza, R. (2002). Matrix metalloproteinase-1 and matrix metalloproteinase-3 gene promoter polymorphisms are associated with carotid artery stenosis. Stroke 33:2408–2412.PubMedCrossRefGoogle Scholar
  36. 36.
    Falahatpisheh, M.H., Donnelly, K.C., and Ramos, K.S. (2001). Antagonistic interactions among nephrotoxic polycyclic aromatic hydrocarbons. J. Toxicol. Environ. Health Am. 62:543–560.CrossRefGoogle Scholar
  37. 37.
    R.J. Reynolds Tobacco Company. (1998). Chemical and biological studies on new cigarette prototypes that heat instead of burn tobacco. R.J. Reynolds Tobacco Company, Winston-Salem, NC, pp. 134–135.Google Scholar
  38. 38.
    Lu, K.P. and Ramos, K.S. (1998). Identification of genes differentially expressed in vascular smooth muscle cells following benzo[a]pyrene challenge: implications for chemical atherogenesis. Biochem. Biophys. Res. Commun. 253: 828–833.PubMedCrossRefGoogle Scholar
  39. 39.
    Ishikawa, K., Sugawara, D., Goto, J., Watanabe, Y., Kawamura, K., Shiomi, M., et al. (2001). Heme oxygenase-1 inhibits atherogenesis in Watanabe heritable hyperlipidemic rabbits. Circulation 104:1831–1836.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  • Brian K. Nordskog
    • 1
  • Allison D. Blixt
    • 2
  • Walter T. Morgan
    • 2
  • Wanda R. Fields
    • 2
  • Gary M. Hellmann
    • 1
    • 2
  1. 1.Department of Plant PathologyNorth Carolina State UniversityRaleigh
  2. 2.Research and Development, Bowman Gray Technical CenterR.J. Reynolds Tobacco Co.Winston-Salem

Personalised recommendations