Cardiovascular Toxicology

, Volume 2, Issue 2, pp 75–89 | Cite as

Microtubules in cardiac toxicity and disease

Article

Abstract

Microtubules (MTs) are dynamic, cytoskeletal fibers that are found in every eukaryotic cell type. MTs serve a wide range of functions, including cell division, membrane and vesicle transport, and motility. As such, MTs play pivotal roles in cardiac development and function. Agents that disrupt normal MT function, including such therapeutic agents as vincristine and paclitaxel, have also been shown to affect essential cardiac activities such as sarcomere mechanics, beat rate, and the secretion of important molecules (e.g., atrial natriuretic factor). Disease states that lead to either ischemia- or pressureoverload-induced cardiac hypertrophy also alter the microtubule cytoskeleton in several ways. A fuller understanding of the contributions of MTs to cardiac development and function will be necessary to minimize the deleterious, side effects of the therapeutic application of MT-disrupting drugs. This review summarizes current hypotheses and experimental results that demonstrate the central role of MTs in heart cell function and disease.

Key Words

Cytoskeleton toxicity microtubule cardiac hypertrophy chemotherapy development 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hiller, G. and Weber, K. (1978). Radioimmunoassay, for tubulin: a quantitative comparison of the tubulin content of different established tissue culture cells and tissues. Cell 14:795–804.PubMedGoogle Scholar
  2. 2.
    Klein, I. (1983). Colchicine stimulates the rate of contraction of heart cells in culture. Card. Res. 17:459–465.Google Scholar
  3. 3.
    Webster, D.R. (1997). Regulation of posttranslationally modified microtubule populations during neonatal cardiac development. J. Mol. Cell. Cardiol. 29:1747–1761.PubMedGoogle Scholar
  4. 4.
    Ishibashi, Y., Tsutsui, H., Yamamoto, S., Takahashi, M., Imanaka-Yoshida, K., Yoshida, T. et al. (1996). Role of microtubules in myocyte contractile dysfunction during cardiac hypertrophy in the rat. Am. J. Physiol. Heart Circ. Physiol. 271:H1978-H1987.Google Scholar
  5. 5.
    Samuel, J.-L., Schwartz, K., Lompre, A.-M., Delcayre, C., Marotte, F., Swynghedauw, B., et al. (1983). Immunological quantitation and localization of tubulin in adult rat heart isolated myocytes. Eur. J. Cell Biol. 31:99–106.PubMedGoogle Scholar
  6. 6.
    Hoyle, H.D., and Raff, E.C. (1990). Two Drosophila beta tubulin isoforms are not functionally equivalent. J. Cell Biol. 111:1009–1026.PubMedGoogle Scholar
  7. 7.
    Narishige, T., Blade, K.L., Ishibashi, Y., Nagai, T., Hamawaki, M., Menick, D.R., et al. (1999). Cardiac hypertrophic and developmental regulation of the β-tubulin multigene family. J. Biol. Chem. 274:9692–9697.PubMedGoogle Scholar
  8. 8.
    Nogales E. (2000). Structural insights into microtubule function. Annu. Rev. Biochem. 69:277–302.PubMedGoogle Scholar
  9. 9.
    Wang, N., Yan, K., and Rasenick, M.M. (1990). Tubulin binds specifically to the signal-transducing proteins, Gs alpha and Gi alpha 1. J. Biol. Chem. 265:1239–1242.PubMedGoogle Scholar
  10. 10.
    Mitchison, T. and Kirschner, M. (1984) Dynamic instability of microtubule growth. Nature 312:237–242.PubMedGoogle Scholar
  11. 11.
    Kirschner, M. and Mitchison, T. (1986). Beyond self-assembly: from microtubules to morphogenesis. Cell 45:329–342.PubMedGoogle Scholar
  12. 12.
    Wilson, L. and Jordan, M.J. (1994). Microtubules, in Pharmacological Probes of Microtubule Function. (Hyams, J.S and Lloyd, C.W., eds.), Wiley-Liss, New York.Google Scholar
  13. 13.
    Ke, Y., Ye, K., Grossniklaus, H.E., Archer, D.R., Joshi, H.C., and Kapp, J.A. (2000). Noscapine inhibits tumor growth with little toxicity to normal tissues or inhibition of immune responses. Cancer Immunol. Immunother. 49: 217–225.PubMedGoogle Scholar
  14. 14.
    Rowinsky, E.K. and Donehower, R.C. (1995). Paclitaxel (taxol). N. Engl. J. Med. 332:1004–1014.PubMedGoogle Scholar
  15. 15.
    Nguyen, H.L., Gruber, D., and Bulinski, J.C. (1999) Microtubule-associated protein 4 (MAP4) regulates assembly, protomer-polymer partitioning and synthesis of tubulin in cultured cells. J. Cell Sci. 1112:1813–1824.Google Scholar
  16. 16.
    Hirokawa, N. (1998). Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279:519–526.PubMedGoogle Scholar
  17. 17.
    Aizawa, H., Emori, Y., Murofushi, H., Kawasaki, H., Sakai, H., and Suzuki, K. (1990). Molecular cloning of a ubiquitously distributed microtubule-associated protein with Mr 190, 000. J. Biol. Chem. 265:13,849–13,855.Google Scholar
  18. 18.
    Chapin, S.J., Lue, C.-M., Yu, M.T., and Bulinski, J.C. (1995). Differential expression of alternatively spliced forms of MAP4: a repertoire of structurally different microtubule-binding domains. Biochemistry 34:2289–2301.PubMedGoogle Scholar
  19. 19.
    Mangan, M.E. and Olmsted, J.B. (1996). A muscle-specific variant of microtubule-associated protein 4 (MAP4) is required in myogenesis Development 122:771–781.PubMedGoogle Scholar
  20. 20.
    Stassen, M.P., Thole, H.H. Schaaf, C., Marquart, A.U., Sinner, K., and Gehrig, H. (1996). Chicken microtubule-associated protein 4 (MAP4): a novel member of the MAP4 family. Histochem. Cell Biol. 106:341–349.PubMedGoogle Scholar
  21. 21.
    Sato, H., Nagai, T., Kuppuswamy, D., Narishige, T., Koide, M., Menick, D.R., et al. (1997). Microtubule stabilization in pressure overload cardiac hypertrophy. J. Cell Biol. 139: 963–973.PubMedGoogle Scholar
  22. 22.
    Lai, F., Fernald, A.A., Zhao, N., and Le Beau, M.M. (2000). cDNA cloning, expression pattern, genomic, structure and chromosomal location of RAB6KIFL, a human kinesin-like gene. Gene 248:117–125.PubMedGoogle Scholar
  23. 23.
    Muresan, V., Abramson, T., Lyass, A., Winter, D., Porro, E., Hong, F., et al. (1998). KIF3C and KIF3A form a novel neuronal heteromeric, kinesin that associates with membrane vesciles. Mol. Biol. Cell 9:637–652.PubMedGoogle Scholar
  24. 24.
    Nakagawa, T., Tanaka, Y., Matsuoka E., Kondo, S., Okada, Y., Noda, Y., et al. (1997). Identification and classification of 16 new kinesin superfamily (KIF) proteins in mouse genome. Proc. Natl. Acad. Sci. USA 94:9654–9659.PubMedGoogle Scholar
  25. 25.
    Yoshida, T., Takanari, H., and Izutsu, K. (1992). Distribution of cytoplasmic and axonemal dyneins in rat tissues. J. Cell Sci. 101:579–587.PubMedGoogle Scholar
  26. 26.
    Macrae, T.H. (1997). Tubulin posttranslational modifications. Enzymes and the mechanisms of action. Eur. J. Biochem. 244:265–278.PubMedGoogle Scholar
  27. 27.
    Idriss, H.T. (2000). Man to trypanosome: the tubulin tyrosination/detyrosination cyclerevisited. Cell Motil. Cytoskel. 45:173–184.Google Scholar
  28. 28.
    Kreitzer, G., Liao, G., and Gundersen, G.G. (1999). Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesin-dependent mechanism. Mol. Biol. Cell 10:1105–1118.PubMedGoogle Scholar
  29. 29.
    Webster, D.R. (1997). Neonatal rat cardiomyocytes possess a large population of stable microtubules that is enriched in post-translationally modified subunits. J. Mol. Cell. Cardiol. 29:2813–2824.PubMedGoogle Scholar
  30. 30.
    Oakley, B.R. (1994). Microtubules, in γ-Tubulin. (Hyams, J.S., and Lloyd, C.W., eds.), Wiley-Liss, New York.Google Scholar
  31. 31.
    Cassimeris, L., Pryer, N.K., and Salmon, E.D. (1988). Real-time observations of microtubule dynamic instability in living cells. J. Cell Biol. 107:2223–2232.PubMedGoogle Scholar
  32. 32.
    Webster, D.R., Gundersen, G.G., Bulinski, J.C., and Borisy, G.G. (1987) Assembly and turnover of detyrosinated tubulin in vivo. J. Cell. Biol. 105:265–276.PubMedGoogle Scholar
  33. 33.
    Baas, P.W. and Black, M.M. (1990). Individual microtubules in the axon consist of domains that differ in both composition and stability. J. Cell Biol. 111:495–509.bPubMedGoogle Scholar
  34. 34.
    Bulinski, J.C., Richards, J.E., and Piperno, G. (1988). Posttranslational modifications of α-tubulin: detyrosination and acetylation differentiate populations of interphase microtubules in cultured cells. J. Cell Biol. 106:1213–1220.PubMedGoogle Scholar
  35. 35.
    Kreis, T. (1987). Microtubules containing detyrosinated tubulin are less dynamic. EMBO J. 6:2597–2606.PubMedGoogle Scholar
  36. 36.
    Schulze, E., Asai, D.J., Bulinski, J.C., and Kirschner, M. (1987). Posttranslational modifications and microtubule stability. J. Cell Biol. 105:2167–2177.PubMedGoogle Scholar
  37. 37.
    Webster, D.R., Gundersen, G.G., Bulinski, J.C., and Borisy, G.G. (1987). Differential turnover of tyrosinated, and detyrosinated microtubules. Proc. Natl. Acad. Sci. USA 84: 9040–9044.PubMedGoogle Scholar
  38. 38.
    Kronebusch, P.J., and Singer, S.J. (1987). The microtubule-organizing complex and the Golgi apparatus are colocalized around the entire nuclear envelope of interphase cardiac myocytes. J. Cell Sci. 88:25–34.PubMedGoogle Scholar
  39. 39.
    Goldstein, M.A. and Entman, M.L. (1979). Microtubules in mammalian heart muscle. J. Cell Biol. 80:183–195.PubMedGoogle Scholar
  40. 40.
    Saetersdal, T., Greve, G., and Dalen, H. (1990). Associations between beta-tubulin and mitochondria in adult isolated heart myocytes as shown by immunofluorescence and immunoelectron microscopy. Histochemistry 95:1–10.PubMedGoogle Scholar
  41. 41.
    Rappaport, L., Samuel, J.L., Bertier-Savalle, B., Marotte, F., and Schwartz, K. (1985). Microtubules and desmin filaments during the onset of heart growth in the rat. Basic Res. Cardiol. 80:129–132.PubMedGoogle Scholar
  42. 42.
    Samuel, J.L., Bertier, B., Bugaisky, L., Marotte, F., Swynghedauw, B., Schwartz, K., et al. (1984) Different distributions of microtubules, desmin filaments and isomyosins during the onset of cardiac hypertrophy in the rat. Eur. J. Cell Biol. 34:300–306.PubMedGoogle Scholar
  43. 43.
    Tsutsui, H., Ishihara, K. and Cooper, G., IV. (1993). Cytoskeletal role in the contractile, dysfunction of hypertrophied myocardium. Science 260:682–687.PubMedGoogle Scholar
  44. 44.
    Iida, H. and Shibata, Y. (1991). Functional Golgi units in microtubule-disrupted cultured atrial myocytes. J. Histochem. Cytochem. 39: 1349–1355.PubMedGoogle Scholar
  45. 45.
    Perhonen, M., Sharp, W.W., and Russell, B. (1998). Microtubules are needed for dispersal of a-myosin heavy chain mRNA in rat neonatal cardiac myocytes. J. Mol. Cell. Cardiol. 30:1713–1722.PubMedGoogle Scholar
  46. 46.
    Severson, D.L. and Carroll, R. (1989). Effect of taxol on the heparin-induced secretion of lipoprotein lipase from cardiac myocytes. Mol. Cell. Biochem. 88:17–22.PubMedGoogle Scholar
  47. 47.
    Saetersdal, T., Larsen, T.H., and Roli, J. (1995). Expression of fibronectin, laminin and ribosomes in normal and nocodazole-treated neonatal heart cells in culture: a study by laser scanning confocal microscopy and immunocytochemistry. Cell Tissue Res. 28:11–22.Google Scholar
  48. 48.
    Larsen, T.H., Huitfeldt, H.S., Myking, O., and Saetersdal, T. (1993). Microtubule-associated distribution of specific granules and secretion of atrial natriuretic factor in primary cultures of rat cardiomyocytes. Cell Tissue Res. 272: 201–210.PubMedGoogle Scholar
  49. 49.
    Yonemochi, H., Yasunaga, S., Teshima, Y., Takahashi, N., Nakagawa, M., Ito, M., et al. (2000). Rapid electrical stimulation of contraction reduces the density of ββ-adrenergic receptors and responsiveness of cultured neonatal rat cardiomyocytes. Circulation 101:2625–2630.PubMedGoogle Scholar
  50. 50.
    Limas, C.J. and Limas, C. (1983). Involvement of microtubules in the isoproterenol-induced “down”-regulation of myocardial β-adrenergic receptors. Biochim. Biophys. Acta 735:181–184.PubMedGoogle Scholar
  51. 51.
    Hori, M., Sato, H., Iwai, K., Sato, H., Inoue, M., Kitabatake, A., et al. (1992). Norepinephrine disrupts cytoskeletal framework of microtubules in rat hearts. Jpn. Circ. J. 56:462–468.PubMedGoogle Scholar
  52. 52.
    Gregorio, C.C., and Antin, P.B. (2000). To the heart of myofibril assenmbly. TICB 10:355–362.Google Scholar
  53. 53.
    Warren, R.H. (1974) Microtubular organization in elongating myogenic cells. J. Cell Biol. 63:550–566.PubMedGoogle Scholar
  54. 54.
    Bischoff, R. and Holtzer, H. (1968). The effect of mitotic inhibitors on myogenesis in vitro. J. Cell Biol. 36:111–127.Google Scholar
  55. 55.
    Fransen, M.E. and Lernanski L.F. (1989). Studies of heart development in normal and cardiac lethal mutant axolotls: a review. Scanning Microsc. 3:1101–1115, discussion 1115–1106.PubMedGoogle Scholar
  56. 56.
    Dabiri, G.A., Turnacioglu, K.K., Sanger, J.M., and Sanger, J.W. (1997). Myofibrillogenesis visualized in living embryonic cardiomyocytes. Proc. Natl. Acad. Sci. USA 94:9493–9498.PubMedGoogle Scholar
  57. 57.
    Atherton, B.T., Meyer, D.M., and Simpson, D.G. (1986). Assembly and remodelling of myofibrils and intercalated discs in cultured neonatal rat heart cells. J. Cell Sci. 86: 233–248.PubMedGoogle Scholar
  58. 58.
    Antin, P.B., Forry-Schaudies, S., Friedman, T.M., Tapscott, S.J., and Holtzer, H. (1981). Taxol induces postmitotic myoblasts to assemble interdigitating microtubule-myosin arrays that exclude actin filaments. J. Cell Biol. 90:300–308.PubMedGoogle Scholar
  59. 59.
    Toyama, Y., Forry-Schaudies, S., Hoffman, B., and Holtzer, H. (1982). Effects of taxol and Colcemid on myofibrillogenesis. Proc. Natl. Acad. Sci. USA 79:6556–6560.PubMedGoogle Scholar
  60. 60.
    Shimo-Oka, T., Hayashi, M., and Watanabe, Y. (1980). Tubulin-myosin interaction. Some properties of binding between tubulin and myosin. Biochemistry 19:4921–4926.PubMedGoogle Scholar
  61. 61.
    Schweiger, S., Foerster, J., Lehmann, T., Suckow, V., Muller, Y.A., Walter, G., et al. (1999). The Opitz syndrome gene product, MID1, associates with microtubules. Proc. Natl. Acad. Sci. USA 96:2794–2799.PubMedGoogle Scholar
  62. 62.
    Centner, T., Yano, J., Kimura, E., McElhinny, A.S., Pelin, K., Witt, C.C., et al. (2001) Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J. Mol. Biol. 306:717–726.PubMedGoogle Scholar
  63. 63.
    Griparic, L. and Keller, T.C.S.I. (1998). Identification and expression of two novel CLIP-170/restin isoforms expressed predominantly in muscle. Biochim. Biophys. Acta 1405: 35–46.PubMedGoogle Scholar
  64. 64.
    Lampidis, T.J., Trevorrow, K.W., and Rubin, R.W. (1986). Effects of colchicine on cardiac cell function indicate possible role for membrane surface tubulin. Exp. Cell Res. 164:463–470.PubMedGoogle Scholar
  65. 65.
    Lampidis, T.J., Kolonias, D., Savaraj, N., and Rubin, R.W. (1992). Cardiostimulatory and antiarrhythmic activity of tubulin-binding agents. Proc. Natl. Acad. Sci. USA 89: 1256–1260.PubMedGoogle Scholar
  66. 66.
    Webster, D.R. and Patrick, D.L. (2000). Beating rate of isolated neonatal cardiomyocytes is regulated by the stable microtubule subset. Am. J. Physiol. Heart Circ. Physiol. 47:H1653-H1661.Google Scholar
  67. 67.
    Calaghan, S.C., White, E., and Le Guennec, J.-Y. (2001). A unifying mechanism for the role of microtubules in the regulation of [Ca2+]i and contraction in the cardiac myocyte. Circ. Res. 89:31e.Google Scholar
  68. 68.
    Yamamoto, S., Tsutsui, H., Takahashi, M., Ishibashi, Y., Tagawa, H., Imanaka-Yoshida, K., et al. (1998). Role of microtubules in the viscoelastic properties of isolated cardiac muscle. J. Mol. Cell. Cardiol. 30:1841–1853.PubMedGoogle Scholar
  69. 69.
    Shimoni, Y., Ewart, H.S. and Severson, D. (1999). Insulin stimulation of rat ventricular K+ currents depends on the integrity of the cytoskeleton. J. Physiol. 514.3:735–745.PubMedGoogle Scholar
  70. 70.
    Maltsev, V.A. and Undrovinas, A.I. (1997). Cytoskeleton modulates coupling between availability and activation of cardiac sodium channel. Am. J. Physiol. Heart Circ. Physiol. 42:H1832-H1840.Google Scholar
  71. 71.
    Gomez, A.M., Kerfant, B.G., and Vassort, G. (2000). Microtubule disruption modulates Ca(2+) signaling in rat cardiac myocytes. Circ. Res. 86:30–36.PubMedGoogle Scholar
  72. 72.
    Howarth, F.C., Calaghan, S.C., Boyett, M.R., and White, E. (1999). Effect of the microtubule polymerizing agent taxol on contraction, Ca2+ transient and L-type Ca2+ current in rat ventricular myocytes. J. Physiol. 516:409–419.PubMedGoogle Scholar
  73. 73.
    Pascarel, C., Brette, F., and Le Guennec, J.-Y. (2001). Enhancement of the T-type calcium current by hyposmotic shock in isolated guinea-pig ventricular myocytes. J. Mol. Cell. Cardiol. 33:1363–1369.PubMedGoogle Scholar
  74. 74.
    Motlagh, D., Alden, K.J., Russell, B., and Garcia, J. (2002). Sodium current modulation by a tubulin/GTP coupled process in rat neonatal cardiac myocytes. J. Physiol. 540(1):93–103.PubMedGoogle Scholar
  75. 75.
    Galli, A. and DeFelice, L.J. (1994). Inactivation, of L-type Ca channels in embryonic chick ventricle cells: dependence on the cytoskeletal agents colchicine and taxol. Biophys. J. 67:2296–2304.PubMedGoogle Scholar
  76. 76.
    Kerfant, B.G., Vassort, G., and Gomez, A.M. (2001). Microtubule disruption by colchicine reversibly enhances calcium signaling in intact rat cardiac myocytes. Circ. Res. 88:E59-E65.PubMedGoogle Scholar
  77. 77.
    Calaghan, S.C., Le Guennec, J.-Y., and White, E. (2001). Modulation of Ca2+ signaling by microtubule disruption in rat ventricular myocytes and its dependence on the ruptured patch-clamp configuration. Circ. Res. 88:e32-e37.PubMedGoogle Scholar
  78. 78.
    Unno, T., Komori, S., and Ohashi, H. (1999). Microtubule cytoskeleton involvement in muscarinic suppression of voltage-gated calcium channel current in guinea-pig ileal smooth muscle. Br. J. Pharm. 127:1703–1711.Google Scholar
  79. 79.
    Gundersen, G.G. and Cook, T.A. (1999). Microtubules and signal transduction. Curr. Opin. Cell Biol. 11:81–94.PubMedGoogle Scholar
  80. 80.
    Hayashi M. and Matsumura, F. (1975). Calcium binding to bovine brain tubulin. FEBS Lett. 58:222–225.PubMedGoogle Scholar
  81. 81.
    Weiss, Y. G., merin, G., Koganov, E., Ribo, A., Oppenheim-Eden, A., Medalion, B., et al. (2000). Postcardio-pulmonary bypass hypoxemia: a prospective study on incidence, risk factors, and clinical significance. J. Cardiothorac. Vasc. Anesth. 14: 506–513.PubMedGoogle Scholar
  82. 82.
    Pei J.-M., Yu X.-C., Fung, M.-L., Zhou, J.-J., Cheung, C.-S., Wong, N.-S., et al. (2000). Impaired Gsα and adenylyl cyclase cause β-adrenoceptor desensitization in chronically hypoxic rat hearts. Am. J. Physiol. Cell Physiol. 279:C1455-C1463.PubMedGoogle Scholar
  83. 83.
    Jennings, R.B., Murry, C.E., Steenbergen, J.C., and Reimer, K.A. (1990). Development of cell injury in sustained acute ischemia. Circulation 82:II2-II12.PubMedGoogle Scholar
  84. 84.
    Kwiatkowska-Patzer, B., Patzer, J.A., and Heller, L.J. (1993). Pseudomonas aeruginosa exotoxin A enhances automaticity and potentiates hypoxic depression of isolated rat hearts. Proc. Soc. Exp. Biol. Med. 202:377–383.PubMedGoogle Scholar
  85. 85.
    Hein, S., Scheffold, T., and Schaper, J. (1995). Ischemia induces early changes to cytoskeletal and contractile proteins in diseased human myocardium. J. Thorac. Cardiovasc. Surg. 110:89–98.PubMedGoogle Scholar
  86. 86.
    Iwai, K., Hori, M., Kitabatake, A., Kurihara, H., Uchida, K., Inoue, M., et al. (1990). Disruption of microtubules as an early sign of irreversible ischemic injury. Circ. Res. 67:694–706.PubMedGoogle Scholar
  87. 87.
    Elsasser, A., Suzuki, K., and Schaper, J. (2000). Unresolved issues regarding the role of apoptosis in the pathogenesis of ischemic injury and heart failure. J. Mol. Cell. Cardiol. 32:711–724.PubMedGoogle Scholar
  88. 88.
    Bluhm, W.F., Martin, J.L., Mestril, R., and Dillmann, W.H. (1998). Specific heat shock proteins protect microtubules during simulated ischemia in cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 275:H2243-H2249.Google Scholar
  89. 89.
    Cummings, J., Kaplan, J.L, Gao, E., Clas, D., Dalsey, W.C., and deGaravilla, L. (2000). Antagonism of the cardiodepressant effects of adenosine during acute hypoxia. Acad. Emerg. Med. 7:618–624.PubMedGoogle Scholar
  90. 90.
    Kronon, M., Allen, B.S., Halldorsson, A., Rahman, S., Wang, T., and Ilbawi, M. (1999). Dose dependency of L-arginine in neonatal myocardial protection: the nitric oxide paradox. J. Thorac. Cardiovasc. Surg. 118:655–664.PubMedGoogle Scholar
  91. 91.
    Shiono, N., Rao, V., Weisel, R.D., Kawasaki, M., Li, R.-K., Mickle, D.A.G., et al. (2002). l-Arginine protects human heart cells from low-volume anoxia and reoxygenation. Am. J. Physiol. Heart Circ. Physiol. 282:H805-H815.PubMedGoogle Scholar
  92. 92.
    Eiserich, J.P., Estevez, A.G., Bamberg, T.V., Ye, Y.Z., Chumley, P.H., Beckman, J.S., et al. (1999). Microtubule dysfunction by posttranslational nitrotyrosination of α-tubulin: a nitric oxide-dependent mechanism of cellular injury. Proc. Natl. Acad. Sci. USA 96:6365–6370.PubMedGoogle Scholar
  93. 93.
    Sato, H., Hori, M., Kitakaze, M., Iwai, K., Takashima, S. Kurihara, H., et al. (1993). Reperfusion after brief ischemia disrupts the microtubule network in canine hearts. Circ. Res. 72:361–375.PubMedGoogle Scholar
  94. 94.
    Liu, H., Zhang, H.Y., Zhu, X., Shao, Z., and Yao, Z. (2001). Preconditioning blocks cardiocyte apoptosis: role of KATP channels and PKC-ε. Am. J. Physiol. Heart Circ. Physiol. 282:H1380-H1386.Google Scholar
  95. 95.
    Sharma, A. and Singh, M. (2000). Possible mechanism of cardioprotective effect of ischaemic preconditioning in isolated rat heart. Pharmacol. Res. 41:635–640.PubMedGoogle Scholar
  96. 96.
    Liu, Y., Ytrehus, K., and Downey, J.M. (1994). Evidence that translocation of protein kinase C is a key event during ischemic preconditioning of rabbit myocardium. J. Mol. Cell. Cardiol. 26:661–668.PubMedGoogle Scholar
  97. 97.
    Arutunyan, A., Webster, D.R., Swift, L.M., and Sarvazyan, N. (2001). Localized injury in cardiomyocyte network: a new experimental model of ischemia-reperfusion arrhythmias. Am. J. Physiol. Heart Circ. Physiol. 280:H1905-H1915.PubMedGoogle Scholar
  98. 98.
    Giepmans, B.N.G., Verlaan, I., Hengeveld, T., Janssen, H., Calafat, J., Falk, M.M., et al. (2001). Gap junction protein connexin-43 interacts directly with microtubules. Curr. Biol. 11:1364–1368.PubMedGoogle Scholar
  99. 99.
    Davis, J.C. Jr. (1999). A practical approach to gout. Postgrad. Med. 106:115–123.PubMedGoogle Scholar
  100. 100.
    Oakley, C.M. (2000). Myocarditis, pericarditis and other pericardial diseases. Heart 84:449–454.PubMedGoogle Scholar
  101. 101.
    Sullivan, T.P., King, L.E., and Boyd, A.S. (1998). Colchicine in dermatology. J. Am. Acad. Dermatol. 39:993–999.PubMedGoogle Scholar
  102. 102.
    Simkin, P.J. and Gardner, G.C. (2000). Colchicine use in cyclosporine treated transplant recipients: how little is too much? J. Rheumatol. 27:1334–1337.PubMedGoogle Scholar
  103. 103.
    Hoffstein, S., Goldstein, I.M., and Weissman, G. (1977). Role of microtubule asembly in lysosomal enzyme secretion from human polymorphonuclear leukocytes. A reevaluation. J. Cell Biol. 73:242–256.PubMedGoogle Scholar
  104. 104.
    Gregory, R.K. and Smith, I.E. (2000). Vinorelbine—a clinical review. Br. J. Cancer 82:1907–1913.PubMedGoogle Scholar
  105. 105.
    Supko, J.G., Lynch, T.J., Clark, J.W., Fram, R., Allen, L.F., Velagapudi, R., et al. (2000). A phase 1 clinical and pharmacokinetic study of the dolastatin analogue cemadotin administered as a 5-day continuous intravenous infusion. Cancer Chemother. Pharmacol. 46:319–328.PubMedGoogle Scholar
  106. 106.
    Rabkin, S.W. and Sunga, P. (1987). The effect of doxorubicin (adriamycin) on cytoplasmic microtubule system in cardiac cells. J. Mol. Cell. Cardiol. 19:1073–1083.PubMedGoogle Scholar
  107. 107.
    Zhang, C.C., Yang, J.-M., White, E., Murphy, M., Levine, A., and Hait, W.N. (1998). The role of MAP4 expression in the sensitivity to paclitaxel and resistance to vinca alkaloids in p53 mutant cells. Oncogene 16:1617–1624.PubMedGoogle Scholar
  108. 108.
    Zhang, C.C., Yang, J.-M., Bash-Babula, J., White, E., Murphy, M.D., Levine, A.J., et al. (1999). DNA damage increases sensitivity to vinca alkaloids and decreases sensitivity to taxanes through p53-dependent repression of microtubule-associated protein 4. Cancer Res. 59:3663–3670.PubMedGoogle Scholar
  109. 109.
    Cainarca, S., Messali, S., Ballabio, A., and Meroni, G. (1999). Functional characterization of the Opitz syndrome gene product (midin): evidence for homodimerization and association with microtubules throughout the cell cycle. Hum. Mol. Genet. 8:1387–1396.PubMedGoogle Scholar
  110. 110.
    Marszalek, J.R., Ruiz-Lozano, P., Roberts, E., Chien, K.R., and Goldstein, L.S.B. (1999). Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc. Natl. Acad. Sci. USA 96:5043–5048.PubMedGoogle Scholar
  111. 111.
    Hein, S., Kostin, S., Heling, A., Maeno, Y., and Schaper, J. (2000). The role of the cytoskeleton in heart failure. Cardiol. Res. 45:273–278.Google Scholar
  112. 112.
    ter Keurs, H.E.D.J. (1998). Microtubules in cardiac hypertrophy. Circ. Res. 82:828–831.PubMedGoogle Scholar
  113. 113.
    Walsh, R.A. (1997). Microtubules and pressure-overload hypertrophy. Circ. Res. 80:295–296.PubMedGoogle Scholar
  114. 114.
    Rappaport, L. and Samuel, J.L. (1988). Microtubules in cardiac myocytes. Int. Rev. Cytol. 113:101–143.PubMedGoogle Scholar
  115. 115.
    Steinberg, S.F. (2000). Many pathways to cardiac hypertrophy. J. Mol. Cell. Cardiol. 32:1381–1384.PubMedGoogle Scholar
  116. 116.
    Tagawa, H., Koide, M., Sato, H., Zile, M.R., Carabello, B.A. and Cooper, G., IV. (1998). Cytoskeletal role in the transition from compensated to decompensated hypertrophy during adult canine left ventricular pressure overloading. Circ. Res. 82:751–761.PubMedGoogle Scholar
  117. 117.
    Zile, M.R., Koide, M., Sato, H., Ishiguro, Y., Conrad, C.H., Buckley, J.M., et al. (1999). Role of microtubules in the contractile dysfunction of hypertrophied myocardium. J. Am. Coll. Cardiol. 33:250–260.PubMedGoogle Scholar
  118. 118.
    Koide, M., Hamawaki, M., Narishige, T., Sato, H., Nemoto, S., DeFreyte, B.S., et al. (2000). Microtubule depolymerization normalizes in vivo myocardial contractile function in dogs with pressure-overload left ventricular hypertrophy. Circulation 102:1045–1052.PubMedGoogle Scholar
  119. 119.
    Tsutsui, H., Ishibashi, Y., Takahashi, M., Namba, T., Tagawa, H., Imanaka-Yoshida, K., et al. (1999). Chronic colchicine administration attenuates cardiac hypertrophy in spontaneously hypertensive rats. J. Mol. Cell. Cardiol. 31:1203–1213.PubMedGoogle Scholar
  120. 120.
    Cicogna, A.C., Robinson, K.G., Conrad, C.H., Singh, K., Squire, R., Okoshi, M.P., et al. (1999). Direct effects of colchicine on myocardial function. Studies in hypertrophied and failing spontaneously hypertensive rats. Hypertension 33:60–65.PubMedGoogle Scholar
  121. 121.
    Bailey, B.A., Dipla, K., Li, S., and Houser, S.R. (1997). Cellular basis of contractile derangements of hypertrophied feline ventricular myocytes. J. Mol. Cell. Cardiol. 29:1823–1835.PubMedGoogle Scholar
  122. 122.
    Wang, X., Li, F., Campbell, S.E., and Gerdes, A.M. (1999). Chronic pressure overload cardiac hypertrophy and failure in guinea pigs: II. Cytoskeletal remodelling. J. Mol. Cell. Cardiol. 31:319–331.PubMedGoogle Scholar
  123. 123.
    Collins, J.F., Pawloski-Dahm, C., Davis, M.G., Ball, N., Dorn, II, G.W., and Walsh, R.A. (1996). The role of the cytoskeleton in left ventricular pressure overload hypertrophy and failure. J. Mol. Cell. Cardiol. 28:1435–1443.PubMedGoogle Scholar
  124. 124.
    Samuel, J.-L., Marotte, F., Delcayre, C., and Rappaport, L. (1986). Microtubule reorganization is related to rate of heart myocyte hypertrophy in rat. Am. J. Physiol. Heart Circ. Physiol. 251:H1118-H1125.Google Scholar
  125. 125.
    Stamenovic, D., Mijailovich, S.M., Tolic-Norrelykke, I.M., Chen, J., and Wang, N. (2002). Cell prestress II. Contribution of microtubules. Am. J. Physiol. Cell Physiol. 282:C617-C624.PubMedGoogle Scholar
  126. 126.
    Tagawa, H., Wang, N., Narishige, T., Ingber, D.E., Zile, M.R., and Cooper, G.I. (1997). Cytoskeletal mechanics in pressure-overload cardiac hypertrophy. Circ. Res. 80:281–289.PubMedGoogle Scholar
  127. 127.
    Heidemann, S.R., Kaech, S., Buxbaum, R.E., and Matus, A. (1999). Direct observations of the mechanical behaviors of the cytoskeleton in living fibroblasts. J. Cell Biol. 145:109–122.PubMedGoogle Scholar
  128. 128.
    Kent, R.L., Mann, D.L., Urabe, Y., Hisano, R., Hewett, K.W., Loughnane, M., et al. (1989). Contractile dysfunction of isolated feline cardiocytes in response to viscous loading. Am. J. Physiol. Heart Circ. Physiol. 26:H1717-H1727.Google Scholar
  129. 129.
    Zile, M.R., Richardson, K., Cowles, M.K., Buckley, J.M., Koide, M., Cowles, B.A., et al. (1998). Constitutive properties of adult ammalian cardiac muscle cells. Circulation 98:567–579.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2002

Authors and Affiliations

  1. 1.Department of Cell Biology and BiochemistryTexas Tech University Health Sciences CenterLubbock

Personalised recommendations