Clinical Reviews in Allergy & Immunology

, Volume 31, Issue 2–3, pp 143–161 | Cite as

β2-Agonists and bronchial hyperresponsiveness

  • Clive P. Page
  • Domenico Spina


Bronchial hyperresponsiveness (BHR) is a characteristic feature of asthma, and individuals with this disease respond to a range of physiological and chemical insults that are otherwise innocuous to healthy subjects, suggesting that the mechanisms underlying this phenomenon are characteristic of the asthma phenotype. BHR can be increased following exposure to environmental allergens in suitably sensitized individuals, pollutants, and certain viruses and can also be exacerbated by exposure to certain drugs, including nonsteroidal anti-inflammatory agents and β-blockers. Although β2-agonists administered acutely remain the treatment for the symptoms of asthma, paradoxically, regular treatment with these drugs can result in an increase in BHR, and this has been suggested to contribute to the increase in asthma morbidity and mortality that has been reported by numerous investigators. This article highlights our current understanding of this phenomenon and examines the potential mechanisms responsible for this effect.

Index Entries

Bronchial hyperresponsiveness β2-agonists asthma asthma mortality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sont, J. K., Willems, L. N., Bel, E. H., van Krieken, J. H., Vandenbroucke, J. P., and Sterk, P. J. (1999), Clinical control and histopathologic outcome of asthma when using airway hyperresponsiveness as an additional guide to long-term treatment. The AMPUL Study Group. Am. J. Respir. Crit. Care Med. 159, 1043–1051.PubMedGoogle Scholar
  2. 2.
    Mithcell, E. A. (1989) Is current treatment increasing asthma mortality and morbidity? Thorax 44, 81–84.Google Scholar
  3. 3.
    Kelly, H. W. (2005) What is new with the beta2-agonists: issues in the management of asthma. Ann. Pharmacother. 39, 931–938.PubMedGoogle Scholar
  4. 4.
    Walters, J. A., Wood-Baker, R., and Walters, E. H. (2005), Long-acting beta2-agonists in asthma: an overview of Cochrane systematic reviews. Respir. Med. 99, 384–395.PubMedGoogle Scholar
  5. 5.
    Stolley P. D. (1972), Asthma mortality. Why the United States was spared an epidemic of deaths due to asthma. Am. Rev. Respir. Dis. 105, 883–890.PubMedGoogle Scholar
  6. 6.
    Beasley, R., Pearce, N., Crane, J., and Burgess, C. (1999), Beta-agonists: what is the evidence that their use increases the risk of asthma morbidity and mortality? J. Allergy Clin. Immunol. 104, S18-S30.PubMedGoogle Scholar
  7. 7.
    Abramson M. J., Walters, J., and Walters, E. H. (2003), Adverse effects of beta-agonists: are they clinically relevant? Am J. Respir. Med. 2, 287–297.PubMedGoogle Scholar
  8. 8.
    Sears, M. R. (2000), Short-acting inhaled beta-agonists: to be taken regularly or as needed? Lancet 355, 1658–1659.PubMedGoogle Scholar
  9. 9.
    Bond, R. A. (2001), Is paradoxical pharmacology a strategy worth pursuing? Trends Pharmacol Sci. 22, 273–276.PubMedGoogle Scholar
  10. 10.
    Sterk, P. J. and Bel, E. H. (1989), Bronchial hyperresponsiveness: the need for a distinction between hypersensitivity and excessive airway narrowing. Eur. Respir. J. 2, 267–274.PubMedGoogle Scholar
  11. 11.
    Cockcroft, D. W., Killian, D. N., Mellon, J. J. A., and Hargreave, F. E. (1977), Protective effect of drugs on histamine induced asthma. Thorax 32, 429–437.PubMedGoogle Scholar
  12. 12.
    Sotomayor, H., Badier, M., Vervloet, D., and Orehek, J. (1984), Seasonal increase of carbachol airway responsiveness in patients allergic to grass pollen: Reversal by corticosteroids. Am. Rev. Respir. Dis. 130, 56–58.PubMedGoogle Scholar
  13. 13.
    Cockcroft, D. W. and Murdock, K. Y. (1987), Comparative effects of inhaled salbutamol, sodium cromoglycate, and beclomethasone dipropionate on allergen-induced early asthmatic responses, late asthmatic responses, and increased bronchial responsiveness to histamine. J. Allergy Clin. Immunol. 79, 734–740PubMedGoogle Scholar
  14. 14.
    Laitinen, L. A. and Laitinen, A. (1988), Mucosal inflammation and bronchial hyperreactivity. Eur. Respir J. 1, 488–489.PubMedGoogle Scholar
  15. 15.
    Avital, A., Springer, C., Bar-Yishay, E., and Godfrey, S. (1995), Adenosine, methacholine, and exercise challenges in children with asthma or paediatric chronic obstructive pulmonary disease. Thorax 50, 511–516.PubMedGoogle Scholar
  16. 16.
    Simonsson, B. G., Skoogh, B. E., Bergh, N. P., Andersson, R., and Svedmyr, N. (1973), In vivo and in vitro effect of bradykinin on bronchial motor tone in normal subjects and patients with airways obstruction. Respiration 30, 378–388.PubMedGoogle Scholar
  17. 17.
    Fuller, R. W., Dixon, C. M., Cuss, F. M., and Barnes, P. J. (1987), Bradykinin-induced bronchoconstriction in humans.MMode of action. Am. Rev. Respir. Dis. 135, 176–180.PubMedGoogle Scholar
  18. 18.
    Polosa, R. and Holgate, S. T. (1990), Comparative airway response to inhaled bradykinin, kallidin, and [des-Arg9]bradykinin in normal and asthmatic subjects. Am. Rev. Respir. Dis. 142, 1367–1371.PubMedGoogle Scholar
  19. 19.
    Tan, W. C., Cripps, E., Douglas, N., and Sudlow, M. F. (1982), Protective effect of drugs on bronchroconstriction induced by sulphur dioxide. Thorax 37, 671–676.PubMedGoogle Scholar
  20. 20.
    Sheppard, D., Wong, W. S., Uehara, C. F., Nadel, J. A., and Boushey, H. A. (1980), Lower threshold and greater bronchomotor responsiveness of asthmatic subjects to sulfur dioxide. Am. Rev. Respir. Dis. 122, 873–878.PubMedGoogle Scholar
  21. 21.
    Nichol, G. M., Alton, E. W., Nix, A., Geddes, D. M., Chung, K. F., and Barnes, P. J. (1990), Effect of inhaled furosemide on metabisulfite- and methacholine-induced bronchoconstrictionaand nasal potential difference in asthmatic subjects. Am. Rev. Respir. Dis. 142, 576–580.PubMedGoogle Scholar
  22. 22.
    Wright, W., Zhang, Y. G., Salome, C. M., and Woolcock, A. J. (1990), Effect of inhaled preservatives on asthmatic subjects. I. Sodium metabisulfite. Am. Rev. Respir. Dis. 141, 1400–1404.PubMedGoogle Scholar
  23. 23.
    Anderson, S. D., Schoeffel, R. E., and Finney, M. (1983), Evaluation of ultrasonically nebulised solutions for provocation testing in patients with asthma. Thorax 38, 284–291.PubMedGoogle Scholar
  24. 24.
    Sheppard, D., Rizk, N. W., Boushey, H. A., and Bethel, R. A. (1983), Mechanism of cough and bronchoconstriction induced by distilled water aerosol. Am. Rev. Respir. Dis. 127, 691–694.PubMedGoogle Scholar
  25. 25.
    Cushley, M. J., Tattersfield, A. E., and Holgate, S. T. (1983), Inhaled a denosine and guanosine on airway resistance in normal and asthmatic subjects. Br. J. Clin. Pharmacol. 15, 161–165.PubMedGoogle Scholar
  26. 26.
    Basoglu, O. K., Pelleg, A., Essilfie-Quaye, S., Brindicci, C., Barnes, P. J., and Kharitonov, S. A. (2005), Effects of aerosolized adenosine 5′-triphosphate vs adenosine 5′-monophosphate on dyspnea and airway caliber in healthy nonsmokers and patients with asthma. Chest 128, 1905–1909.PubMedGoogle Scholar
  27. 27.
    Van den Berge, M., Polosa, R., Kerstjens, H. A., and Postma, D. S. (2004), The role of endogenous and exogenous AMP in asthma and chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 114, 737–746.PubMedGoogle Scholar
  28. 28.
    Fowler, S. J., Dempsey, Q. J., Sims, E. J., and Lipworth, B. J. (2000), Screening for bronchial hyperresponsiveness using methacholine and adenosine monophosphate. Relationship to asthma severity and beta(2)-receptor genotype. Am. J. Respir Crit. Care Med. 162, 1318–1322.PubMedGoogle Scholar
  29. 29.
    Grootendorst, D. C. and Rabe, K. F. (2004), Mechanisms of bronchial hyperreactivity in asthma and chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 1, 77–87.PubMedGoogle Scholar
  30. 30.
    Van Schoor, J., Joos, G. F., Pauwels, R. A. (2000), Indirect bronchial hyperresponsiveness in asthma: mechanisms, pharmacology and implications for clincial research. Eur. Respir. J. 16, 514–533.PubMedGoogle Scholar
  31. 31.
    Van Schoor, J., Pauwels, R., Joos, G. (2005), Indirect bronchial hyper-responsiveness: the coming of age of a specific group of bronchial challenges. Clin. Exp. Allergy 35, 250–261.PubMedGoogle Scholar
  32. 32.
    Marks, G. B., Yates, D. H., Sist, M., et al. (1996), Respiratory sensation during bronchial challenge testing with methacholine, sodium metabisulphite, and adenosine monophosphate. Thorax 51, 793–798.PubMedGoogle Scholar
  33. 33.
    Rutgers, S. R., ten Hacken, N. H., Koeter, G. H., and Postma, D. S. (2000), Borg scores before and after challenge with adenosine 5′-monophosphate and methacholine in subjects with COPD and asthma. Eur. Respir. J. 16, 486–490.PubMedGoogle Scholar
  34. 34.
    Berman, A. R., Togias, A. G., Skloot, G., and Proud, D. (1995), Allergen-induced hyperresponsiveness to bradykinin is more pronounced than that to methacholine. J. Appl. Physiol. 78, 1844–1852.PubMedGoogle Scholar
  35. 35.
    O'Connor, B. J., Crowther, S. D., Costello, J. F., and Morley, J. (1999), Selective airway responsiveness in asthma. Trends Pharmacol. Sci. 20, 9–11.PubMedGoogle Scholar
  36. 36.
    van den Toorn, L. M., Prins, J. B., Overbeek, S. E., Hoogsteden, H. C., and De Jongste, J. C. (2000), Adolescents in clinical remission of atopic asthma have elevated exhaled nitric oxide levels and bronchial hyperresponsiveness. Am J. Respir. Crit. Care Med. 162, 953–957.Google Scholar
  37. 37.
    van den Toorn, L. M., Overbeek, S. E., De Jongste, J. C., Leman, K., Hoogsteden, H. C., and Prins, J. B. (2001), Alrway inflammation is present during clinical remission of atopic asthma. Am J. Respir. Crit. Care Med 164, 2107–2113.PubMedGoogle Scholar
  38. 38.
    Bai, T. R. and Knight, D. A. (2005), Structural changes in the airways in asthma: observations and consequences, Clin. Sci. (Lond.) 108, 463–477.Google Scholar
  39. 39.
    Fedorov, I. A., Wilson, S. J., Davies, D. E., and Holgate, S. T. (2005), Epithelial stress and structural remodelling in childhood asthma. Thorax 60, 389–394.PubMedGoogle Scholar
  40. 40.
    Ebina, M., Takahashi, T., Chiba, T., and Motomiya, M. (1993), Cellular hypertrophy and hyperplasia of airway smooth muscles underlying bronchial asthma. A 3-D morphometric study. Am Rev. Respir Dis. 148, 720–726.PubMedGoogle Scholar
  41. 41.
    Ma, X., Cheng, Z., Kong, H., et al. (2002), Changes in biophysical and biochemical properties of single bronchial smooth muscle cells from asthmatic subjects. Am. J. Physiol. Lung Cell Mol. Physiol. 283, L1181-L1189.PubMedGoogle Scholar
  42. 42.
    Deng, L., Fairbank, N. J., Cole, D. J., Fredberg, J. J., and Maksym, G. N. (2005), Airway smooth muscle tone moudulates mechanically induced cytoskeletal stiffening and remodeling. J. Appl. Physiol. 99, 634–641.PubMedGoogle Scholar
  43. 43.
    Jeffery, P. K. (2004), Remodeling and inflammation of bronchi in asthma and chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 1, 176–183.PubMedGoogle Scholar
  44. 44.
    Morley, J. (2005), Inflammation and astham therapy: a false dawn. Pulm. Pharmacol. Ther. 19, 200–204.PubMedGoogle Scholar
  45. 45.
    Robinson, D. S. (2004), The role of the mast cell in asthma: induction of airway hyperresponsiveness by interaction with smooth muscle? J. Allergy Clin. Immunol 114, 58–65.PubMedGoogle Scholar
  46. 46.
    Kay, A. B. (2005), The role of eosinophils in the pathogenesis of asthma. Trends Mol. Med. 11, 148–152.PubMedGoogle Scholar
  47. 47.
    Elias, J. A., Homer, R. J., Hamid, Q., and Lee, C. G. (2005), Chitinases and chitinase-like proteins in T(H)2 inflammation and asthma. J. Allergy Clin. Immunol. 116, 497–500.PubMedGoogle Scholar
  48. 48.
    Jacoby, D. B., Costello, R. M, and Fryer, A. D. (2001), Eosinophil recruitment to the airway nerves. J. Allergy Clin. Immunol. 107, 211–218.PubMedGoogle Scholar
  49. 49.
    Minshall, E. M., Leung, D. Y., Martin, R. J., and (1997), Eosinophil-associated TGF-betal mRNA expression and airways fibrosis in bronchial asthma. Am J. Respir. Cell Mol. Biol. 17, 326–333.PubMedGoogle Scholar
  50. 50.
    Bryan, S. A., O'Connor, B. J., Matti, S., et al. (2000), Effects of recombinant human interleukin-12 on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 356, 2149–2153.PubMedGoogle Scholar
  51. 51.
    Leckie, M. J., ten Brinke, A., Khan, J., et al. (2000), Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 356, 2144–2148.PubMedGoogle Scholar
  52. 52.
    De Meer, G., Heederik, D., and Postma, D. S. (2002), Bronchial responsiveness to adenosine 5′-monophosphaate (AMP) and methacholine differ in their relationship with airway allergy and baseline FEV(1). Am. J. Respir. Crit. Care Med. 165, 327–331.PubMedGoogle Scholar
  53. 53.
    Ober, C. and Thompson, E. E. (2005), Rethinking genetic models of asthma: the role of environmental modifiers. Curr. Opin. Immunol. 17, 670–678.PubMedGoogle Scholar
  54. 54.
    Spina, D. and Page, C. P. (2002), Asthma—a need for a rethink? Trends Pharmacol. Sci. 23, 311–315.PubMedGoogle Scholar
  55. 53.
    Salpeter, S. R., Ormiston, T. M., and Salpeter, E. E. (2002), Cardioselective beta-blockers in patients with reactive airway disease: a meta-analysis. Ann. Intern. Med. 137, 715–725.PubMedGoogle Scholar
  56. 56.
    Szczeklik, A. and Stevenson, D. D. (2003), Aspirininduced asthma: advances in pathogenesis, diagnosis, and management. J. Allergy Clin. Immunol. 111, 913–921.PubMedGoogle Scholar
  57. 57.
    Mellillo, G., Padovano, A., Masi, C., Melillo, E., and Cocco, G. (1991), Aspirin-induced asthma and bronchial hyperresponsiveness. Allerg. Immunol. (Paris) 23, 423–427.Google Scholar
  58. 58.
    Vatrella, A., Parrella, R., Pelaia, G., et al. (2001), Effects of non-bronchoconstrictive doses of inhaled propranolol on airway responsiveness to methacholine. Eur. J. Clin. Pharmacol. 57, 99–104.PubMedGoogle Scholar
  59. 59.
    Mitchell, H. W. and Adcock, J. (1988), Vagal mechanisms and the effect of indomethacin on bronchoconstrictor stimuli in the guinea-pig. Br. J. Pharmacol. 94, 522–527.PubMedGoogle Scholar
  60. 60.
    Mitchell, H. W. (1988), Inhibitory effect of sodium cromoglycate on pulmonary responses to histamine administered after indomethacin in anaesthetized guinea-pigs, Br. J. Pharmacol. 94, 515–521.PubMedGoogle Scholar
  61. 61.
    Fryer, A. D. and Okanlami, O. A. (1993), Neuronal M2 muscarinic receptor function in guinea-pig lungs is inhibited by indomethacin. Am. Rev. Respir. Dis. 147, 559–564.PubMedGoogle Scholar
  62. 62.
    Maclagan, J. and Ney, U. M. (1979), Investigation of the mechanism of propranolol-induced bronchoconstriction. Br. J. Pharmacol. 66, 409–418.PubMedGoogle Scholar
  63. 63.
    Seeds, E. A., Spina, D., and Page, C. P. (1999), The role of sensory nerves in propranolol-induced bronchial hyperresponsiveness in the guinea-pig. Pulm. Pharmacol. Ther. 12, 27–34.PubMedGoogle Scholar
  64. 64.
    Speizer, F. E., Doll, R., and Heaf, P (1968), Observations on recent increase in mortality from asthma. BMJ 1, 335–339.PubMedGoogle Scholar
  65. 65.
    Suissa, S. and Ernst, P. (1997), Optical illusions from visual data analysis: example of the New Zealand asthma mortality epidemic. J. Clin. Epidemiol. 50, 1079–1088.PubMedGoogle Scholar
  66. 66.
    Spitzer, W. O., Suissa, S., Ernst, P., et al. (1992), The use of beta-agonists and the risk of death and near death from asthma. N. Engl. J. Med. 326, 501–506.PubMedCrossRefGoogle Scholar
  67. 67.
    Suissa, S., Ernst, P., Boivin, J. F., et al. (1994), A cohort analysis of excess mortality in asthma and the use of inhaled beta-agonists. Am. J. Respir. Crit. Care Med. 149, 604–610.PubMedGoogle Scholar
  68. 68.
    Anderson, H. R., Ayres, J. G., Sturdy, P. M., et al. (2005), Bronchodilator treatment and deaths from asthma: case-control study. BMJ 330, 117.PubMedGoogle Scholar
  69. 69.
    Castle, W., Fuller, R., Hall, J., and Palmer, J. (1993), Serevent nationwide surveillance study: Comparison of slameterol with salbutamol in asthmatic patients who require regular brochodilator treatment. Br. Med. J. 306, 1034–1037.Google Scholar
  70. 70.
    Lurie, P and Wolfe, S. M. (2005), Misleading data analysis in salmeterol (SMART) study. Lancet 366, 1261–1262.PubMedGoogle Scholar
  71. 71.
    Ernst, P., Spitzer, W. O., Suissa, S., et al. (1992), Risk of fatal and near-fatal asthma in relation to inhaled corticosteroid use. JAMA 268, 3462–3464.PubMedGoogle Scholar
  72. 72.
    Lanes, S. F., Garcia Rodriguez, L. A., and Huerta, C. (2002), Respiratory medications and risk of asthma death. Thorax 57, 683–686.PubMedGoogle Scholar
  73. 73.
    McIvor, R. A., Pizzichini, E., Turner, M. O., Hussack, P., Hargreave, F. E., and Sears, M. R. (1998), Potential masking effects of salmeterol on airway inflammation in asthma. Am. J. Respir. Crit. Care Med. 158, 924–930.PubMedGoogle Scholar
  74. 74.
    Lemanske, R. F. Jr., Sorkness, C. A., Mauger, E. A., et al. (2001), Inhaled corticosteroid reduction and elimination in patients with persistent asthma receiving salmeterol: a randomized controlled trial. JAMA 285, 2594–2603.PubMedGoogle Scholar
  75. 75.
    Salpeter, S. R., Buckley, N. S., Ormiston, T. M., and Salpeter, E. E. (2006), Meta-analysis: effect of long-acting beta-agonists on severe asthma exacerbations and asthma-related deaths. Ann. Intern. Med. 144, 904–912.PubMedGoogle Scholar
  76. 76.
    Harvey, J. E. and Tattersfield, A. E. (1982), Airway response to salbutamol: effect of regular salbutamol inhalations in normal, atopic, and asthmatic subjects. Thorax 37, 280–287.PubMedGoogle Scholar
  77. 77.
    Peel, E. T. and Gibson, G. J (1980), Effects of longterm inhaled salbutamol therapy on the provocation of asthma by histamine. Am. Rev. Respir. Dis. 121, 973–978.PubMedGoogle Scholar
  78. 78.
    Israel, E., Drazen, J. M., Liggett, S. B., et al. (2000), The effect of polymorphisms of the beta(2)-adrenergic receptor on the response to regular use of albuterol in asthma. Am J. Respir. Crit. Care Med. 162, 75–80.PubMedGoogle Scholar
  79. 79.
    Vathenen, A. S., Higgins, B. G., Knox, A. J., Britton, J. R., and Tattersfield, A. E. (1988), Rebound increase in bronchial responsiveness after treatment with inhaled terbutaline. Lancet 1, 554–557.PubMedGoogle Scholar
  80. 80.
    Kraan, J., Koeter, G. H., Van Der Mark, T., Sluiter, H. J., and De Vries, K. (1985), Changes in bronchial hyperreactivity induced by 4 weeks of treatment with antiasthmatic drugs in patients with allergic asthma: A comparison between budesonide and terbutaline. J. Allergy Clin. Immunol. 76, 628–636.PubMedGoogle Scholar
  81. 81.
    Kerrebijn, K. F., Essen-Zandvliet, E. E. M., and Neijens, H. J. (1987), Effect of long-term treatment with inhaled corticosteroids and beta-agonists on the bronchial responsiveness in children with asthma. J. Allergy Clin. Immunol. 79, 653–659.PubMedGoogle Scholar
  82. 82.
    Raes, M., Mulder, P., and Kerrebijn, K. F. (1989). Long-term effect of ipratropium bromide and fenoterol on the bronchia hy-erresponsiveness to histamine in children with asthma. J. Allergy Clin. Immunol. 84, 874–879.PubMedGoogle Scholar
  83. 83.
    Van Schayck, C. P., Graafsma, S. J., Visch, M. B., Dompeling, E., Van Weel, C., and Van Herwaarden, C. L. A. (1990), Increased bronchial hyperresponsiveness after inhaling salbutamol during 1 vear is not caused subsensitization to salbutamol. J. Allergy Clin. Immunol. 86, 793–800.PubMedGoogle Scholar
  84. 84.
    Sears, M. R., Taylor, D. R., Print, C. G., et al. (1990), Regular inhaled beta-agonist treatment in bronchial asthama. Lancet 336, 1391–1396.PubMedGoogle Scholar
  85. 85.
    Waalkens, H. J., Gerritsen, J., Koeter, G. H., Krouwels, F. H., Van Aalderen, W. M. C., and Knol, K. (1991), Budesonide and terbutaline or terbutaline alone in children with mild asthma: Effects on bronchial hyperesponsiveness and diurnal variation in peak flow. Thorax 46, 499–503.PubMedGoogle Scholar
  86. 86.
    Boulet, L. P., Cartier, A., Thomson, N. C., Roberts, R. S., Dolovich, J., and Hargreave, F. E. (1983), Asthma and increases in nonallergic bronchial responsiveness from seasonal pollen exposure. J. Allergy Clin. Immunol. 71, 399–406.PubMedGoogle Scholar
  87. 87.
    Mitchell, E. A. and Jackson, R. T. (1989), Recent trends in asthma mortality, morbidity, and management in New Zealand. Journal of Asthma 26, 349–354.PubMedGoogle Scholar
  88. 88.
    Cockroft, D. W., McParland, C. P., Britto, S. A., Swystun, V. A., and Rutherford, B. C. (1993), Regular inhaled salbutamol and airway responsiveness to allergen. Lancet 342, 833–837.Google Scholar
  89. 89.
    Prieto, L., Gutierrez, V., Torres, V., Uixera, S., and Marin, J. (2002), Effect of salmeterol on seasonal changes in airway responsiveness and exhaled nitric oxide in pollen-sensitive asthmatic subjects. Chest 122, 798–805.PubMedGoogle Scholar
  90. 90.
    Taylor, D. R., Town, G. I., Herbison, G. P., et al. (1998). Asthma control during long term treatment with regular inhaled salbutamol and salmeterol. Thorax 53, 744–752.PubMedGoogle Scholar
  91. 91.
    Kemp, J. P., DeGraff, A. C., Pearlman, D. S., et al. (1999). A 1-year study of salmeterol powder on pulmonary function and hyperresponsiveness to methacholine. J. Allergy Clin. Immunol. 104, 1189–1197.PubMedGoogle Scholar
  92. 92.
    FitzGerald, J. M., Chapman, K. R., Della, C. G., et al. (1999). Sustained bronchoprotection, bronchodilatation, and symptom control during regular formoterol use in asthma of moderate or greater severity. J. Allergy Clin. Immunol. 103, 427–435.PubMedGoogle Scholar
  93. 93.
    Cloosterman, S. G., Bijl-Hofland, I. D., van Herwaarden, C. L., et al. (2001). A placebo-controlled clinical trial of regular monotherapy with short-acting and long-acting beta(2)-agonists in allergic asthmatic patients. Chest 119, 1306–1315.PubMedGoogle Scholar
  94. 94.
    Bel, E. H., Zwinderman, A. H., Timmers, M. C., Dijkman, J. H., and Sterk, P. J. (1991). The protective effect of beta2 agonist against excessive airway narrowing in response to bronchoconstrictor stimuli in asthma and chronic obstructive lung disease. Thorax 46, 9–14.PubMedGoogle Scholar
  95. 95.
    Wong, A. G., O'Shaughnessy, A. D., Walker, C. M., and Sears, M. R. (1997), Effects of long-acting and short-acting beta-agonists on methacholine dose-response curves in asthmatics. Eur. Respir. J. 10, 330–336.PubMedGoogle Scholar
  96. 96.
    Sterk, P. J. and Bel, E. H. (1991), The shape of the dose-response curve to inhaled bronchoconstrictor agents in asthma and in chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 143, 1433–1437.PubMedGoogle Scholar
  97. 97.
    Witt-Enderby, P. A., Yamamura, H. I., Halonen, M., Palmer, J. D., and Bloom, J. W. (1993), Chronic exposure to a beta 2-adrenoceptor agonist increases the airway response to methacholine. Eur. J. Pharmacol. 241, 121–123.PubMedGoogle Scholar
  98. 98.
    Wang, Z. L., Bramley, A. M., McNamara, A., Pare, P. D., and Bai, T. R. (1994), Chronic fenoterol exposure increases in vivo and in vitro airway responses in guinea pigs. Am. J. Respir. Crit. Care Med. 149, 960–965.PubMedGoogle Scholar
  99. 99.
    Kamachi, A., Munakata, M., Nasuhara, Y., et al. (2001), Enhancement of goblet cell hyperplasia and airway hyperresponsiveness by salbutamol in a rat model of atopic asthma. Thorax 56, 19–54.PubMedGoogle Scholar
  100. 100.
    Overbeek, S. E., Rijnbeek, P. R., Vons, C., Mulder, P. G. H., Hoogsteden, H. C., and Bogaard, J. M. (1996), Effects of fluticasone propionate on methacholine dose-response curves in nonsmoking atopic asthmatics. Eur. Respir. J. 9, 2256–2262.PubMedGoogle Scholar
  101. 101.
    Page, C. P., Cotter, T., Kilfeather, S., Sullivan, P., Spina, D., and Costello, J. F. (1998), Effect of chronic theophylline treatment on the methacholine dose-response curve in allergic asthmatic subjects. Eur. Respir. J. 12, 24–29.PubMedGoogle Scholar
  102. 102.
    Cockcroft, D. W., Bhagat, R., Kalra, S., and Swystun, V. A. (1995), Inhaled beta2-agonists and allergen-induced airway responses [1]. J. Allergy Clin. Immunol. 96, 1013,1014.Google Scholar
  103. 103.
    Cheung, D., Timmers, M. C., Zwinderman, A. H., Bel, E. H., Dijkman, J. H., and Sterk, P. J. (1992), Longterm effects of a long-acting beta2-adrenoceptor agonist, salmeterol, on airway hyperresponsiveness in patients with mild asthma. N. Engl. J. Med. 327, 1198–1203.PubMedCrossRefGoogle Scholar
  104. 104.
    Verberne, A. A. P. H. and De Jongste, J. C. (1996), The role of inhaled long-acting bronchodilator therapy. Eur. Respir. Rev. 6, 199–203.Google Scholar
  105. 105.
    Lipworth, B., Tan, S., Devlin, M., Aiken, T., Baker, R., and Hendrick, D. (1998), Effects of treatment with formoterol on bronchoprotection against methacholine. Am. J. Med. 104, 431–438.PubMedGoogle Scholar
  106. 106.
    Rabe, K. F., Jorres, R., Nowak, D., Behr, N., and Magnussen, H. (1993), Comparison of the effects of salmeterol and formoterol on airway tone and responsiveness over 24 hours in bronchial asthma. Am. Rev. Respir. Dis. 147, 1436–1441.PubMedGoogle Scholar
  107. 107.
    Cockcroft, D. W., Swystun, V. A., and Bhagat, R. (1995), Interaction of inhaled beta2 agonist and inhaled corticosteroid on airway responsiveness to allergen and methacholine. Am. J. Respir. Crit. Care Med. 152, 1485–1489.PubMedGoogle Scholar
  108. 108.
    Bhagat, R., Swystun, V. A., and Cockcroft, D. W. (1996), Salbutamol-induced increased airway responsiveness to allergen and reduced protection versus methacholine: Dose response. J. Allergy Clin. Immunol. 97, 47–52.PubMedGoogle Scholar
  109. 109.
    Giannini, D., Bacci, E., Dente, F. L., et al. (1999). Inhaled beclomethasone dipropionate reverts tolerance to the protective effect of salmeterol on allergen challenge. Chest 115, 629–634.PubMedGoogle Scholar
  110. 110.
    Cockcroft, D. W., O'Byrne, P. M., Swystun, V. A., and Bhagat, R. (1995), Regular use of inhaled albuterol and the allergen-induced late asthmatic response. J. Allergy Clin. Immunol. 96, 44–49.PubMedGoogle Scholar
  111. 111.
    Gauvreau, G. M., Jordana, M., Watson, R. M., Cockcroft, D. W., and O'Byrne, P. M. (1997), Effect of regular inhlaed albuterol on allergen-induced late responses and sputum eosinophils in asthmatic subjects. Am. J. Respir. Crit. Care Med. 156, 1738–1745.PubMedGoogle Scholar
  112. 112.
    O'Connor, B. J., Aikman, S. L., and Barnes, P. J. (1992), Tolerance to the nonbronchodilator effects of inhaled beta2-agonists in asthma. N. Engl. J. Med. 327, 1204–1208.PubMedCrossRefGoogle Scholar
  113. 113.
    Yates, D. H., Worsdell, M., and Barnes, P. J. (1998), Effect of inhaled glucocorticosteroid on mast cell and smooth muscle β2 adrenergic tolerance in mild asthma. Thorax 53, 110–113.PubMedGoogle Scholar
  114. 114.
    Aziz, I., Lipworth, B. J., Dickey, B. F., et al. (1998), Exercise-induced asthma [1] (multiple letters). N. Engl. J. Med. 339, 1783–1786.PubMedGoogle Scholar
  115. 115.
    Gibson, G. J., Greenacre, J. K., Konig, P., Conolly, M. E., and Pride, N. B. (1978), Use of exercise challenge to investigate possible tolerance to beta-adrenoceptor stimulation in asthma. Br. J. Dis. Chest 72, 199–206.PubMedGoogle Scholar
  116. 116.
    Inman, M. D., and O'Byrne, P. M. (1996), The effect of regular inhaled albuterol on exercise-induced bronchoconstriction. Am. J. Respir. Crit. Care Med. 153, 65–69.PubMedGoogle Scholar
  117. 117.
    Ramage, L., Lipworth, B. J., Ingram, C. G., Cree, I. A., and Dhillon, D. P. (1994), Reduced protection against exercise induced bronchoconstriction after chronic dosing with salmeterol. Respir. Med. 88, 363–368.PubMedGoogle Scholar
  118. 118.
    Simons, F. E. R. (1997), A comparison of beclomethasone, salmeterol, and placebo in children with asthma. N. Engl. J. Med. 337, 1659–1665.PubMedGoogle Scholar
  119. 119.
    Nelson, J. A., Strauss, L., Skowronski, M., Ciofo, R., Novak, R., and McFadden, E. R. Jr. (1998), Effect of long-term salmeterol treatment on exercise-induced asthma. N. Engl. J. Med. 339, 141–146.PubMedGoogle Scholar
  120. 120.
    O'Connor, B. J., Fuller, R. W., and Barnes, P. J. (1994), Nonbronchodilator effects of inhaled beta 2 agonists. Greater protection against adenosine monophosphate- than methacholine-induced bronchoconstriction in asthma. Am. J. Respir. Crit. Care Med. 150, 381–387.PubMedGoogle Scholar
  121. 121.
    Ketchell, R. I., Jensen, M. W., Spina, D., and O'Connor, B. J. (2002), Dose-related effects of formoterol on airway responsiveness to adenosine 5′-monophosphate and histamine. Eur. Respir. J. 19, 611–616.PubMedGoogle Scholar
  122. 122.
    Soler, M., Joos, L., Bolliger, C. T., Elsasser, S., and Perruchoud, A. P. (1994), Bronchoprotection by salmeterol: Cell stabilization or functional antagonism? Comparative effects on histamine- and AMP-induced bronchoconstriction. Eur. Respir. J. 7, 1973–1977.PubMedGoogle Scholar
  123. 123.
    Taylor, D. A., Jensen, M. W., Aikman, S. L., Harris, J. G., Barnes, P. J., and O'Connor, B. J. (1997), Comparison of salmeterol and albuterol-induced bronchoprotection against adenosine monophosphate and histamine in mild asthma. Am. J. Respir. Crit. Care Med. 156, 1731–1737.PubMedGoogle Scholar
  124. 124.
    Tran, T. M., Friedman, J., Qunaibi, E., Baameuer, F., Moore, R. H., and Clark, R. B. (2004), Characterization of agonist stimulation of cAMP-dependent protein kinase and G protein-coupled receptor kinase phosphorylation of the beta2-adrenergic receptor using phosphoserine-specific antibodies. Mol. Pharmacol. 65, 196–206.PubMedGoogle Scholar
  125. 125.
    Giannini, D., Carletti, A., Dente, F. L., et al. (1996), Tolerance to the protective effect of salmeterol on allergen challenge. Chest 110, 1452–1457.PubMedGoogle Scholar
  126. 126.
    Drotar, D. E., Davis, E. E., and Cockcroft, D. W. (1998), Tolerance to the bronchoprotective effect of salmeterol 12 hours after starting twice daily treatment. Annals of Allergy 80, 31–34.CrossRefGoogle Scholar
  127. 127.
    Lee, D. K., Currie, G. P., Hall, I. P., Lima, J. J., and Lipworth, B. J. (2004), The arginine-16 beta2-adrenoceptor polymorphism predisposes to bronchoprotective subsensitivity in patients treated with formoterol and salmeterol. Br. J. Clin. Pharmacol. 57, 68–75.PubMedGoogle Scholar
  128. 128.
    Taylor, D. R., Drazen, J. M., Herbison, G. P., Yandava, C. N., Hancox, R. J., and Town, G. I. (2000), Asthma exacerbations during long term beta agonist use: influence of beta(2) adrenoceptor polymorphism. Thorax 55, 762–767.PubMedGoogle Scholar
  129. 129.
    Israel, E., Chinchilli, V. M., Ford, J. G., et al. (2004), Use of regularly scheduled albuterol treatment in asthma: genotype-stratified, randomised, placebo-controlled cross-over trial. Lancet 364, 1505–1512.PubMedGoogle Scholar
  130. 130.
    Small, K. M., McGraw, D. W., and Liggett, S. B. (2003), Pharmacology and physiology of human adrenergic receptor polymorphisms. Annu. Rev. Pharmacol. Toxicol. 43, 381–411.PubMedGoogle Scholar
  131. 131.
    Taylor, D. R., Epton, M. J., Kennedy, M. A., et al. (2005), Bronchodilator Response in Relation to β2-Adrenoceptor Haplotype in Patients with Asthma. Am. J. Respir. Crit. Care Med. 172, 700–703.PubMedGoogle Scholar
  132. 132.
    Lee, D. K., Jackson, C. M., Bates, C. E., and Lipworth, B. J. (2004), Cross tolerance to salbutamol occurs independently of beta2 adrenoceptor genotype-16 in asthmatic patients receiving regular formoterol or salmeterol. Thorax 59, 662–667.PubMedGoogle Scholar
  133. 133.
    Yates, D. H., Kharitonov, S. A., and Barnes, P. J. (1996), An inhaled glucocorticoid does not prevent tolerance to the bronchoprotective effect of a long-acting inhaled beta2-agonist. Am. J. Respir. Crit. Care Med. 154, 1603–1607.PubMedGoogle Scholar
  134. 134.
    Hancox, R. J., Aldridge, R. E., Cowan, J. O., et al. (1999), Tolerance to beta-agonists during acute bronchoconstriction. Eur. Respir. J. 14, 283–287.PubMedGoogle Scholar
  135. 135.
    Kalra, S., Swystun, V. A., Bhagat, R., and Cockcoft, D. W. (1996), Inhaled corticosteroids do not prevent the development of tolerance to the bronchoprotective effect of salmeterol. Chest 109, 953–956.PubMedGoogle Scholar
  136. 136.
    Booth, H., Bish, R., Walters, J., Whitehead, F., and Walters, E. H. (1996), Sahneterol tachyphylaxis in steroid treated asthmatic subjects. Thorax 51, 1100–1104.PubMedGoogle Scholar
  137. 137.
    Tan, K. S., Grove, A., McLean, A., Gnospelius, Y., Hall, I. P., and Lipworth, B. J. (1997), Systemic corticosteroid rapidly reverses bronchodilator subsensitivity induced by formoterol in asthmatic subjects. Am. J. Respir. Crit. Care Med. 156, 28–35.PubMedGoogle Scholar
  138. 138.
    Aziz, I., and Lipworth, B. J. (1999), Abolus of inhaled budesonide rapidly reverses airway subsensitivity and beta2-adrenoceptor down-regulation after regular inhaled formoterol. Chest 115, 623–628.PubMedGoogle Scholar
  139. 139.
    Lai, C. K. W., Twentyman, O. P., and Holgate, S. T. (1989), The effect of an increase in inhaled allergen dose after rimiterol hydrobromide on the occarrence and magnitude of the late asthmatic response and the associated change in nonspecific bronchial responsiveness. Am. Rev. Respir. Dis. 140, 917–923.PubMedGoogle Scholar
  140. 140.
    Adelroth, E., Rosenhall, L., Johansson, S. A., Linden, M., and Venge, P. (1990), Inflammatory cells and eosinophilic activity in asthmatics investigati-gated by bronchoalveolar lavage. The effects of antiasthmatic treatment with budesonide or terbutaline. Am. Rev. Respir. Dis. 142, 91–99.PubMedGoogle Scholar
  141. 141.
    Jeffery, P. K., Godfrey, R. W., Adelroth, E., Nelson, A., Rogers, A., and Johansson, S. A. (1992), Effects of treatment on airway inflammation and thickening of basement membrane reticular collagen in asthma. Am. Rev. Respir. Dis. 145, 890–899.PubMedGoogle Scholar
  142. 142.
    Laitinen, L. A., Laitinen, A., and Haahtela, T. (1992), A comparative study of the effects of an inhaled corticosteroid, budesonide and a β2 agonist, terbutaline, on airway inflammation in newly diagnosed asthma: a randomised double-blind, parallel-group controlled study. J. Allergy Clin. Immunol. 90, 32–42.PubMedGoogle Scholar
  143. 143.
    Manolitsas, N. D., Wang, J., Devalia, J. L., Trigg, C. I., McAulay, A. E., and Davies, R. J. (1995), Regular albuterol, nedocromil sodium, and bronchial inflammation in asthma. Am. J. Respir. Crit. Care Med. 151, 1925–1930.PubMedGoogle Scholar
  144. 144.
    Turner, M. O., Johnston, P. R., Pizzichini, E., Pizzichini, M. M. M., Hussack, P. A., and Hargreave, F. E. (1998), Anti-inflammatory effects of salmeterol compared with beclomethasone in eosinophilic mild exacerbations of asthma: A randomized, placebo controlled trial. Can. Respir. J. 5, 261–268.PubMedGoogle Scholar
  145. 145.
    Gardiner, P. V., Ward, C., Booth, H., Allison, A., Hendrick, D. J., and Walters, E. H. (1994), Effect of eight weeks of treatment with salmeterol on bronchoalveolar lavage inflammatory indices in asthmatics. Am. J. Respir. Crit. Care Med. 150, 1006–1011.PubMedGoogle Scholar
  146. 146.
    Kraft, M., Wenzel, S. E., Bettinger, C. M., and Martin, R. J. (1997), The effect of salmeterol on nocturnal symptoms, airway function, and inflammation in asthma. Chest 111, 1249–1254.PubMedGoogle Scholar
  147. 147.
    Roberts, J. A., Bradding, P., Britten, K. M., et al. (1999), The long-acting β2-agonist salmeterol xinafoate: effects on airway inflammation in asthma. Eur. Respir. J. 14, 275–282.PubMedGoogle Scholar
  148. 148.
    Li, X., Ward, C., Thien, F., et al. (1999), An antiinflammatory effect of salmeterol, a long-acting β2 agonist, assessed in airway biopsies and bronchoalveolar lavage in asthma. Am. J. Respir. Crit. Care Med. 160, 1493–1499.PubMedGoogle Scholar
  149. 149.
    Lazarus, S. C., Boushey, H. A., Fahy, J. V., et al. (2001), Long-acting beta2-agonist monotherapy vs continued therapy with inhaled corticosteroids in patients with persistent asthma: a randomized controlled trial. JAMA 285, 2583–2593.PubMedGoogle Scholar
  150. 150.
    Boulet, L. P., Chakir, J., Milot, J., Boutet, M., and Laviolette, M. (2001), Effect of salmeterol on allergen-induced airway inflammation in mild allergic asthma. Clin. Exp. Allergy 31, 430–437.PubMedGoogle Scholar
  151. 151.
    Lindqvist, A., Karjalainen, E. M., Laitinen, L. A., et al. (2003), Salmeterol resolves airway obstruction but does not possess anti-eosinophil efficacy in newly diagnosed asthma: a randomized, double-blind, parallel group biopsy study comparing the effects of salmeterol, fluticasone propionate, and disodium cromoglycate. J. Allergy Clin. Immunol. 112, 23–28.PubMedGoogle Scholar
  152. 152.
    Wallin, A., Sandstrom, T., Soderberg, M., et al. (1999), The effects of regular inhaled formoterol, budesonide, and placebo on mucosal inflammation and clinical indices in mild asthma. Am. J. Respir. Crit. Care Med. 159, 79–86.PubMedGoogle Scholar
  153. 153.
    Overbeek, S. E., Mulder, P. G., Baelemans, S. M., Hoogsteden, H. C., and Prins, J. B. (2005), Formoterol added to low-dose budesonide has no additional antiinflammatory effect in asthmatic patients. Chest 128, 1121–1127.PubMedGoogle Scholar
  154. 154.
    Haselden, B. M., Kay, A. B., and Larche, M. (1999), Immunoglobulin E-independent major histocompatibility complex-restricted T cell peptide epitope-induced late asthmatic reactions. J. Exp. Med. 189, 1885–1894.PubMedGoogle Scholar
  155. 155.
    Ali, F. R., Oldfield, W. L., Higashi, N., Larche, M., and Kay, A. B. (2004), Late asthmatic reactions induced by inhalation of allergen-derived T cell peptides. Am. J. Respir. Crit. Care Med. 169, 20–26.PubMedGoogle Scholar
  156. 156.
    Machida, I., Matsuse, H., Kondo, Y., et al. (2005), Effects of various anti-asthmatic agents on mite allergen-pulsed murine bone marrow-derived dendritic cells. Clin. Exp. Allergy 35, 884–888.PubMedGoogle Scholar
  157. 157.
    Diamant, Z., Timmers, M. C., Van, d., V, Page, C. P., van der Meer, F. J., and Sterk, P. J. (1996), Effect of inhaled heparin on allergen-induced early and late asthmatic responses in patients with atopic asthma. Am. J. Respir. Crit. Care Med. 153, 1790–1795.PubMedGoogle Scholar
  158. 158.
    Vancheri, C., Mastruzzo, C., Armato, F., et al. (2001), intranasal heparin reduces eosinophil recruitment after nasal allergen challenge in patients with allergic rhinitis. J. Allergy Clin. Immunol. 108, 703–708.PubMedGoogle Scholar
  159. 159.
    Lever, R. and Page, C. P. (2002), Novel drug development opportunities for heparin. Nat. Rev. Drug Discov. 1, 140–148.PubMedGoogle Scholar
  160. 160.
    Page, C. P. (1991), Inhibition of natural anti-inflammatory mechanism by beta2-agonists [4]. Lancet 337, 1285–1286.PubMedGoogle Scholar
  161. 161.
    Rauter, I., Krauth, M.-T., Flicker, S., et al. (2005), Allergen cleavage by effector cell-derived proteases regulates allergic inflammation. Int. J. Immunorehab. 7, 30.Google Scholar
  162. 162.
    Gilbert, I. A., Lenner, K. A., McFadden, E. R. Jr. (1988), Sympathoadrenal response to repetitive exercise in normal and asthmatic subjects. J. Appl. Physiol. 64, 2667–2674.PubMedGoogle Scholar
  163. 163.
    Bates, M. E., Clayton, M., Calhoun, W., et al. (1994), Relationship of plasma epinephrine and circulating eosinophils to nocturnal asthma. Am. J. Respir Crit Care Med. 149, 667–672.PubMedGoogle Scholar
  164. 164.
    Swystun, V. A., Gordon, J. R., Davis, E. B., Zhang, X., and Cockcroft, D. W. (2000), Mast cell tryptase release and asthmatic responses to allergen increase with regular use of salbutamol. J. Allergy Clin. Immunol. 106, 57–64.PubMedGoogle Scholar
  165. 165.
    Penn, R. B., Shaver, J. R., Zangrilli, J. G., et al. (1996), Effects of inflammation and acute beta-agonist inhalation on beta 2-AR signaling in human airways. Am J. Physiol 271, L601-L608.PubMedGoogle Scholar
  166. 166.
    Waldeck, B. (1999), Enantiomers of bronchodilating beta2-adrenoceptor agonists: Is there a cause for concern? J. Allergy Clin. Immunol. 103, 742–748.PubMedGoogle Scholar
  167. 167.
    Dhand, R., Goode, M., Reid, R., Fink, J. B., Fahey, P. J., and Tobin, M. J. (1999), Preferential pulmonary retention of (S)-albuterol after inhalation of racemic albuterol. Am. J. Respir. Crit. Care Med. 160, 1136–1141.PubMedGoogle Scholar
  168. 168.
    Eaton, E. A., Walle, U. K., Wilson, H. M., Aberg, G., and Walle, T. (1996), Stereoselective sulphate conjugation of salbutamol by human lung and bronchial epithelial cells. Br. J. Clin. Pharmacol. 41, 201–206.PubMedCrossRefGoogle Scholar
  169. 169.
    Walle, T. and Walle, U. K. (1990), Stereoselective sulphate conjugation of racemic terbutaline by human liver cytosol. Br. J. Clin. Pharmacol. 30, 127–133.PubMedGoogle Scholar
  170. 170.
    Sanjar, S., Kristersson, A., Mazzoni, L., Morley, J., and Schaeublin, E. (1990), Increased airway reactivity in the guinea-pig follows exposure to intravenous isoprenaline. J. Physiol. 425, 43–54.PubMedGoogle Scholar
  171. 171.
    Mazzoni, L., Naef, R., Chapman, I. D., and Morley, J. (1994), Hyperresponsiveness of the airways following exposure of guinea-pigs to racemic mixtures and distomers of beta 2-selective sympathomimetics. Pulm. Pharmacol. 7, 367–376.PubMedGoogle Scholar
  172. 172.
    Handley, D. A., McCullough, J. R., Crowther, S. D., and Morley, J. (1998), Sympathomimetic enantiomers and asthma. Chirality 10, 262–272.PubMedGoogle Scholar
  173. 173.
    Keir, S., Page, C., and Spina, D. (2002), Bronchial hyperresponsiveness induced by chronic treatment with albuterol: Role of sensory nerves. J. Allergy Clin. Immunol. 110, 388–394.PubMedGoogle Scholar
  174. 174.
    Henderson, W. R. Jr., Banerjee, E. R., and Chi, E. Y. (2005), Differential effects of (S)- and (R)-enantiomers of albuterol in a mouse asthma model. J. Allergy Clin. Immunol. 116, 332–340.PubMedGoogle Scholar
  175. 175.
    Ameredes, B. T. and Calhoun, W. J. (2005), Modulation of GM-CSF release by enantiomers of beta-agonists in human airway smooth muscle. J. Allergy Clin. Immunol. 116, 65–72.PubMedGoogle Scholar
  176. 176.
    Perrin-Fayolle, M. (1995), Salbutamol in the treatment of asthma. Lancet 346, 1101.PubMedGoogle Scholar
  177. 177.
    Cockcroft, D. W. (1999), Pharmacologic therapy for asthma: Overview and historical perspective. J. Clin. Pharmacol. 39, 216–222.PubMedGoogle Scholar
  178. 178.
    Crowther, S. D., Morley, J., and Costello, J. F. (1997), Varied effects of regular salbutamol on airway responsiveness to inhaled spasmogens. Lancet 350, 1450.PubMedGoogle Scholar
  179. 179.
    Agrawal, D. K., Ariyarathna, K., and Kelbe, P. W. (2004), (S)-Albuterol activates pro-constrictory and pro-inflammatory pathways in human bronchial smooth muscle cells. J. Allergy Clin. Immunol. 113, 503–510.PubMedGoogle Scholar
  180. 180.
    Leff, A. R., Herrnreiter, A., Naclerio, R. M., Barrody, F. M., Handley, D. A., and Munoz, N. M. (1997), Effect of enantiomeric forms of albuterol on stimulated secretion of granular protein from human eosinophils. Pulmon. Pharmacol. Ther. 10, 97–104.Google Scholar
  181. 181.
    Cho, S. H., Hartleroad, J. Y., and Oh, C. K. (2001), (S)-albuterol increases the production of histamine and IL-4 in mast cells. Int. Arch. Allergy Immunol. 124, 478–484.PubMedGoogle Scholar
  182. 182.
    Abraha, D., Cho, S. H., Agrawal, D. K., Park, J. M., and Oh, C. K. (2004), (S,S)-formoterol increases the production of IL-4 in mast cells and the airways of a murine asthma model. Int. Arch. Allergy Immunol. 133, 380–388.PubMedGoogle Scholar
  183. 183.
    Baramki, D., Koester, J., Anderson, A. I., and Borish, L. (2002), Modulation of T-cell function by (R)- and (S)-isomers of albuterol: anti-inflammatory influences of (R)-isomers are negated in the presence of the (S)-isomer. J. Allergy Clin. Immunol. 109, 449–454.PubMedGoogle Scholar
  184. 184.
    Volcheck, G. W., Kelkar, P., Bartemes, K. R., Gleich, G. J., and Kita, H. (2005), Effects of (R)- and (S)-isomers of beta-adrenergic agonists on eosinophil response to interleukin-5. Clin. Exp. Allergy 35, 1341–1346.PubMedGoogle Scholar
  185. 185.
    McGraw, D. W., Almoosa, K. F., Paul, R. J., Kobilka, B. K., and Liggett, S. B. (2003), Antithetic regulation by beta-adrenergic receptors of Gq receptor signaling via phospholipase C underlies the airway beta-agonist paradox. J. Clin. Invest. 112, 619–626.PubMedGoogle Scholar
  186. 186.
    Callaerts-Vegh, Z., Evans, K. L., Dudekula, N., et al. (2004), Effects of acute and chronic administration of beta-adrenoceptor ligands on airway function in a murine model of asthma. Proc. Natl. Acad. Sci. USA 101, 4948–4953.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  1. 1.Sackler Institute of Pulmonary Pharmacology, School of Biomedical and Health SciencesKing's College LondonUK

Personalised recommendations