Clinical Reviews in Allergy & Immunology

, Volume 31, Issue 1, pp 1–101 | Cite as

Airborne environmental injuries and human health

  • Andrea T. Borchers
  • Christopher Chang
  • Carl L. Keen
  • M. Eric Gershwin


The concept that the environment in which we live can have detrimental effects on our health has existed for centuries. Obvious examples of substances that can cause human diseases include infectious agents, poisons, chemicals and other noxious agents, drugs, and physical stimuli such as bright lights and loud sounds. Some less obvious agents can include allergens, nontangible agents such as colorless, odorless gases and aerosolized toxins. In recent decades, humans have developed various new materials and compounds. Additionally, we are now producing known compounds, and even naturally occurring substances, in vastly increased amounts. Many of these substances are generally believedto threaten the health of our environment. However, there is also a considerable amount of hype and exaggeration regarding some of these agents (e.g., mold) that is unsubstantiated. This article extensively reviews the data on a large number of airborne-related illnesses and attempted to place scientific reality in the context of clinical medicine.

Index Entries

Sick Building Syndrome volatile organic compounds formaldehyde phthalates organophosphate pesticides organochlorines particulate matter biologicals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tsai YJ, Gershwin ME. The sick building syndrome: what is it when it is? Compr Ther 2002;28(2):140–144.PubMedGoogle Scholar
  2. 2.
    Menzies D, Bourbeau J. Building-related illnesses. N Engl J Med 1997;337(21):1524–1531.PubMedCrossRefGoogle Scholar
  3. 3.
    Jones AP. Indoor air quality and health. Atmospher Environ 1999;33:4535–4564.CrossRefGoogle Scholar
  4. 4.
    Mendell MJ, Fisk WJ, Kreiss K, et al., Improving the health of workers in indoor environments: priority research needs for a national occupational research agenda. Am J Public Health 2002;92(9):1430–1440.PubMedGoogle Scholar
  5. 5.
    Wargocki P, Sundell J, Bischof W, et al. Ventilation and health in non-industrial indoor environments: report from a European multidisciplinary scientific consensus meeting (EUROVEN). Indoor Air 2002;12(2):113–128.PubMedCrossRefGoogle Scholar
  6. 6.
    Seppänen OA, Fisk WJ, Mendell MJ. Association of ventilation rates and CO2 concentrations with health and other responses in commercial and institutional buildings. Indoor Air 1999;9(4):226–252.PubMedCrossRefGoogle Scholar
  7. 7.
    Mendell MJ. Non-specific symptoms in office workers: a review and summary of the literature. Indoor Air 1993;3:227–236.CrossRefGoogle Scholar
  8. 8.
    Menzies D, Tamblyn RM, Nunes F, Hanley J, Tamblyn RT. Exposure to varying levels of contaminants and symptoms among workers in two office buildings. Am J Public Health 1996;86(11): 1629–1633.Google Scholar
  9. 9.
    Apte MG, Fisk WJ, Daisey JM. Associations between indoor CO2 concentrations and sick building syndrome symptoms in U.S. office buildings: an analysis of the 1994–1996 BASE study data. Indoor Air 2000;10(4):246–257.PubMedCrossRefGoogle Scholar
  10. 10.
    Erdmann CA, Apte MG. Mucous membrane and lower respiratory building related symptoms in relation to indoor carbon dioxide concentrations in the 100-building BASE dataset. Indoor Air 2004;14(Suppl 8):127–134.PubMedCrossRefGoogle Scholar
  11. 11.
    Andersson, K, Bakke JV, Bjørseth O, et al., TVOC and health in non-industrial indoor environments. Report from a Nordic Scientific Consensus Meeting at Langholmen in Stockholm, 1996. Indoor Air 1997;7:78–91.CrossRefGoogle Scholar
  12. 12.
    Reynolds SJ, Black DW, Borin SS, et al. Indoor environmental quality in six commercial office buildings in the midwest United States. Appl. Occup Environ Hyg 2001;16(11):1065–1077.PubMedCrossRefGoogle Scholar
  13. 13.
    Glas B, Levin JO, Stenberg B, Stenlund H, Sunesson AL. Variability of personal chemical exposure in eight office buildings in Sweden. J Expo Anal Environ Epidemiol 2004;14 (Suppl 1):S49-S57.PubMedCrossRefGoogle Scholar
  14. 14.
    Apte MG, Erdmann CA. Associations of indoor carbon dioxide concentrations, VOCs, environmental susceptilities with mucous membrane and lower respiratory sick building syndrome symptoms in the BASE study: Analyses of the 100 building dataset. Lawrence Berkeley National Laboratory Paper LBNL-51570 2002; Last accessed Nov. 20, 2005.Google Scholar
  15. 15.
    Bluyssen PM, de Oliveira Fernandes E, Groes L, et al. European indoor air quality audit project in 56 office buildings. Indoor Air 1996;6:221–238.CrossRefGoogle Scholar
  16. 16.
    Schneider T, Sundell J, Bischof W, et al. ‘EUROPART’. Airborne particles in the indoor environment. A European interdisciplinary review of scientific evidence on associations between exposure to particles in buildings and health effects. Indoor Air 2003;13(1): 38–48.PubMedCrossRefGoogle Scholar
  17. 17.
    Jurvelin J, Edwards R, Saarela K, et al. Evaluation of VOC measurements in the EXPOLIS study. Air Pollution Exposure Distributions within Adult Urban Urban Populations in Europe. J Environ Monit 2001;3(1):159–165.PubMedCrossRefGoogle Scholar
  18. 18.
    Wolkoff P, Clausen PA, Jensen B, Nielsen GD, Wilkins CK, Are we measuring the relevant indoor pollutants? Indoor Air 1997;7:92–106.CrossRefGoogle Scholar
  19. 19.
    Ten Brinke J, Selvin S, Hodgson AT, et al. Development of new volatile organic compound (VOC) exposure metrics and their relationship to “sich building syndrome” symptoms. Indoor Air 1998;8: 140–52.CrossRefGoogle Scholar
  20. 20.
    Apte MG, Daisey JM. VOCs and “Sick Building Syndrome”: Application of a new statistical approach for SBS research to U.S. EPA BASE study data. In: Proceedings of Indoor Air 99, The 8th International Conference on Indoor Air Quality and Climate; 1999 August 8–13; Edinburgh, Scotland; 1999. pp. 117–22.Google Scholar
  21. 21.
    Wilkins CK, Wolkoff P, Gyntelberg F, Skov P, Valbjørn O. Characterization of office dust by VOCs and TVOC release—Identification of potential irritant VOCs by partial least squares analysis. Indoor Air 1993;3:283–290.CrossRefGoogle Scholar
  22. 22.
    Pommer L, Fick J, Sundell J, et al. Class separation of buildings with high and low prevalence of SBS by principal component analysis. Indoor Air 2004; 14(1):16–23.PubMedCrossRefGoogle Scholar
  23. 23.
    Niven RM, Fletcher AM, Pickering CA, et al. Building sickness syndrome in healthy and unhealthy buildings: an epidemiological and environmental assessment with cluster analysis. Occup Environ Med 2000;57(9):627–634.PubMedCrossRefGoogle Scholar
  24. 24.
    Weschler CJ, Schields HC. Potential reactions among indoor pollutants. Atmospher Environ 1997;31(21):3487–3495.CrossRefGoogle Scholar
  25. 25.
    Weschler CJ. Ozone in indoor environments: concentration and chemistry. Indoor Air 2000;10(4): 269–288.PubMedCrossRefGoogle Scholar
  26. 26.
    Brown SK. Assessment of pollutant emissions from dry-process photocopiers. Indoor Air 1999;9(4): 259–267.PubMedCrossRefGoogle Scholar
  27. 27.
    Tuomi T, Engström B, Niemelä R, Svinhufvud J, Reijula K. Emission of ozone and organic volatiles from a selection of laser printers and photocopiers. Appl Occup Environ Hyg 2000;15(8):629–634.PubMedCrossRefGoogle Scholar
  28. 28.
    Grosjean D, Williams EL, Seinfeld JH. Atmospheric oxidation of selected terpenes and related carbonyls: gas-phase carbonyl products. Environ Sci Technol 1992;26(8):1526–1532.CrossRefGoogle Scholar
  29. 29.
    Wängberg I, Barnes I, Becker KH. Product and mechanistic study of the reaction of NO3 radials with a-pinene. Environ Sci Technol 1997;31:2130–2135.CrossRefGoogle Scholar
  30. 30.
    Pommer L, Fick J, Andersson B, Nilsson C. The influence of O3′ relative humidity, NO and NO2 on the oxidation of α-pinene and Δ3. J Atmospher Chem 2004;48:173–189.CrossRefGoogle Scholar
  31. 31.
    Pommer L, Fick J, Nilsson C, Anndersson B. An experimental comparison of a kinetic model for the reaction of α-pinene and Δ3-carene with ozone and nitrogen oxides. Indoor Air 2004; 14(Suppl 8):75–83.PubMedCrossRefGoogle Scholar
  32. 32.
    Wolkoff P, Clausen PA, Wilkins CK, Nielsen GD, Formation of strong airway irritants in terpene/ozone mixtures. Indoor Air 2000;10:82–91.PubMedCrossRefGoogle Scholar
  33. 33.
    Wolkoff P, Clausen PA, Wilkins CK, Hougaard KS, Nielsen GD. Formation of strong airway irritants in a model mixture of (+)α-pinene/ozone. Atmospher Environ 1999;33:693–698.CrossRefGoogle Scholar
  34. 34.
    Wainman T, Zhang J, Weschler CJ, Lioy PJ. Ozone and limonene in indoor air: a source of submicron Particle exposure. Environ Health Perspect 2000; 108(12):1139–1145.PubMedCrossRefGoogle Scholar
  35. 35.
    Weschler CJ, Shields HC. The influence of ventilation on reactions among indoor pollutants: modeling and experimental observations. Indoor Air 2000:10(2):92–100.PubMedCrossRefGoogle Scholar
  36. 36.
    Sundell J, Andersson B, Andersson K, Lindvall T. Volatile organic compounds in ventilating air in buildings at different sampling points in the buildings and their relationship with the prevalence of occupant symptoms. Indoor Air 1993:3:82–93.CrossRefGoogle Scholar
  37. 37.
    Kim YM, Harrad S, Harrison RM. Concentrations and sources of VOCs in urban domestic and public microenvironments. Environ Sci Technol 2001; 35(6):997–1004.PubMedCrossRefGoogle Scholar
  38. 38.
    Schupp T, Bolt HM, Hengstler JG. Maximum exposure levels for xylene, formaldehyde and acetaldehyde in cars. Toxicology 2005;206(3):461–470.PubMedCrossRefGoogle Scholar
  39. 39.
    Ashley DL, Prah JD. Time dependence of blood concentrations during and after exposure to a mixture of volatile organic compounds. Arch Environ Health 1997;52(1):26–33.PubMedGoogle Scholar
  40. 40.
    Wallace DG, Buckley T, Pellizzari E, Gordon S. Breath measurements as volatile organic compound biomarkers. Environ Health Perspect 1996; 104(Suppl 5):861–869.PubMedCrossRefGoogle Scholar
  41. 41.
    IARC (International Agency for Research on Cancer). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. http://www-cieiarcfr/htdocs/announcements/vol88htm 2004;Accessed April 15, 2005.Google Scholar
  42. 42.
    Sexton K, Adgate JL, Ramachandran G, et al. Comparison of personal, indoor, and outdoor exposures to hazardous air pollutants in three urban communities. Environ Sci Technol 2004;38(2):423–430.PubMedCrossRefGoogle Scholar
  43. 43.
    Payne-Sturges DC, Burke TA, Breysse P, Diener-West M, Buckley TJ. Personal exposure meets risk assessment: a comparison of measured and modeled exposures and risks in an urban community. Environ Health Perspect 2004;112(5):589–598.PubMedCrossRefGoogle Scholar
  44. 44.
    Adgate JL, Eberly LE, Stroebel C, Pellizzari ED, Sexton K. Personal, indoor, and outdoor VOC exposures in a probability sample of children. J Expo Anal Environ Epidemiol 2004;14(Suppl 1):S4-S13.PubMedCrossRefGoogle Scholar
  45. 45.
    Adgate JL, Church TR, Ryan AD, et al. Outdoor, indoor, and personal exposure to VOCs in children. Environ Health Perspect 2004;112(14):1386–1392.PubMedCrossRefGoogle Scholar
  46. 46.
    Edwards RD, Jurvelin J, Saarela K, Jantunen M. VOC concentrations measured in personal samples and residential indoor, outdoor and workplace microenvironments in EXPOLIS-Helsinki, Finland. Atmospher Environ 2001;35:4531–4543.CrossRefGoogle Scholar
  47. 47.
    Matura M, Goossens A, Bordalo O, et al. Oxidized citrus oil (R-limonene): a frequent skin sensitizer in Europe. J Am Acad Dermatol 2002;47(5):709–714.PubMedCrossRefGoogle Scholar
  48. 47a.
    Kim WJ, Terada N, Nomura T, et al. Effect of formaldehyde on the expression of adhesion molecules in nasal microvascular endothelial cells: the role of formaldehyde in the pathogenesis of sick building syndrome. Clin Exp Allergy 2002;321:287–295.CrossRefGoogle Scholar
  49. 48.
    Pazdrak K, Gorski P, Krakowiak A, Ruta U. Changes in nasal lavage fluid due to formaldehyde inhalation. Int Arch Occup Environ Health 1993;64(7):515–519.PubMedCrossRefGoogle Scholar
  50. 49.
    Norbäck D, Walinder R, Wieslander G, Smedje G. Indoor air pollutants in schools: nasal patency and biomarkers in nasal lavage. Allergy 2000;55:163–170.PubMedCrossRefGoogle Scholar
  51. 50.
    Kita T, Fujimura M, Myou S, et al. Potentiation of allergic bronchoconstriction by repeated exposure to formaldehyde in guinea-pigs in vivo. Clin Exp Allergy 2003;33(12):1747–1753.PubMedCrossRefGoogle Scholar
  52. 51.
    Riedel F, Hasenauer E, Barth PJ, Koziorowski A, Rieger CH. Formaldehyde exposure enhances inhalative allergic sensitization in the guinea pig. Allergy 1996;51(2):94–99.PubMedCrossRefGoogle Scholar
  53. 52.
    Tarkowski M, Gorski P. Increased IgE antiovalbumin level in mice exposed to formaldehyde. Int Arch Allergy Immunol 1995;106(4):422–424.PubMedCrossRefGoogle Scholar
  54. 53.
    Fujimaki H, Kurokawa Y; Kumugita N, Kikuchi M, Sato F, Arashidani K. Differential immunogenic and neurogenic inflammatory responses in an allergic mouse model exposed to low levels of formaldehyde. Toxicology 2004;197(1):1–13.PubMedCrossRefGoogle Scholar
  55. 54.
    Vandenplas O, Fievez P, Delwiche JP, Boulanger J, Thimpont J. Persistent asthma following accidental exposure to formaldehyde. Allergy 2004;59(1): 115,116.PubMedCrossRefGoogle Scholar
  56. 55.
    Lemière C, Desjardins A, Cloutier Y, et al. Occupational asthma due to formaldehyde resin dust with and without reaction to formaldehyde gas. Eur Respir J 1995;8(5):861–865.PubMedGoogle Scholar
  57. 56.
    Sherman MH, Hodgson AT. Formaldehyde as a basis for residential ventilation rates. Indoor Air 2004;14(1):2–8.PubMedCrossRefGoogle Scholar
  58. 57.
    Gordon SM, Callahan PJ, Nishioka MG, et al. Residential environmental measurements in the national human exposure assessment survey (NHEXAS) pilot study in Arizona:preliminary results for pesticides and VOCs. J Expo Anal Environ Epidemiol 1999;9(5):456–470.PubMedCrossRefGoogle Scholar
  59. 58.
    Garrett MH, Hooper MA, Hooper BM, Rayment PR, Abramson MJ. Increased risk of allergy in children due to formaldehyde exposure in homes. Allergy 1999;54(4):330–337.PubMedCrossRefGoogle Scholar
  60. 59.
    Rumchev KB, Spickett JT, Bulsara MK, Phillips MR, Stick SM. Domestic exposure to formaldehyde significantly increases the risk of asthma in young children. Eur Respir J 2002;20(2):403–408.PubMedCrossRefGoogle Scholar
  61. 60.
    Pratt MD, Belsito DV, DeLeo VA, et al. North American Contact Dermatitis Group patch-test results, 2001–2002 study period. Dermatitis 2004;15(4):176–183.PubMedGoogle Scholar
  62. 61.
    Wantke F, Demmer CM, Tappler P, Gotz M, Jarisch R. Exposure to gaseous formaldehyde induces IgE-mediated sensitization to formaldehyde in school-children. Clin Exp Allergy 1996;26(3):276–280.PubMedCrossRefGoogle Scholar
  63. 62.
    Lehmann I, Rehwagen M, Diez U, et al. Enhanced in vivo IgE production and T cell polarization toward the type 2 phenotype in association with indoor exposure to VOC: results of the LARS study. Int J Hyg Environ Health 2001;204(4):211–221.PubMedCrossRefGoogle Scholar
  64. 63.
    Franklin P, Dingle P, Stick S. Raised exhaled nitric oxide in healthy children is associated with domestic formaldehyde levels. Am J Respir Crit Care Med 2000;161(5):1757–1759.PubMedGoogle Scholar
  65. 64.
    Krzyzanowski M, Quackenboss JJ, Lebowitz MD. Chronic respiratory effects of indoor formaldehyde exposure. Environ Res 1990;52(2):117–125.PubMedCrossRefGoogle Scholar
  66. 65.
    Wieslander G, Norbäck D, Björnsson E, Janson C, Boman G. Asthma and the indoor environment: the significance of emission of formaldehyde and volatile organic compounds from newly painted indoor surfaces. Int Arch Occup Environ Health 1997;69(2):115–124.PubMedCrossRefGoogle Scholar
  67. 66.
    Rumchev K, Spickett J, Bulsara M, Phillips M, Stick S. Association of domestic exposure to volatile organic compounds with asthma in young children. Thorax 2004;59(9):746–751.PubMedCrossRefGoogle Scholar
  68. 67.
    Saijo Y, Kishi R, Sata F, et al. Symptoms in relation to chemicals and dampness in newly built dwellings. Int Arch Occup Environ Health 2004;77(7): 461–470.PubMedCrossRefGoogle Scholar
  69. 68.
    Kim JH, Kim JK, Son BK, et al. Effects of air pollutants on childhood asthma. Yonsei Med J 2005; 46(2):239–244.PubMedGoogle Scholar
  70. 69.
    Venn AJ, Cooper M, Antoniak M, Laughlin C, Britton J, Lewis SA. Effects of volatile organic compounds, damp, and other environmental exposures in the home on wheezing illness in children. Thorax 2003;58 (11):955–960.PubMedCrossRefGoogle Scholar
  71. 70.
    Norbäck D, Björnsson E, Janson C, Widstrom J, Boman G. Asthmatic symptoms and volatile organic compounds, formaldehyde, and carbon dioxide in dwellings. Occup Environ Med 1995; 52(6):388–95.PubMedGoogle Scholar
  72. 71.
    Kim YM, Harrad S, Harrison RM. Levels and sources of personal inhalation exposure to volatile organic compounds. Environ Sci Technol 2002;36:5405–5410.PubMedCrossRefGoogle Scholar
  73. 72.
    Sexton K, Adgate JL, Mongin SJ, et al. Evaluating differences between measured personal exposures to volatile organic compounds and concentrations in outdoor and indoor air. Environ Sci Technol 2004;38(9):2593–2602.PubMedCrossRefGoogle Scholar
  74. 73.
    Raw GJ, Coward SK, Brown VM, Crump DR. Exposure to air pollutants in English homes. J Expo Anal Environ Epidemiol 2004;14 (Suppl 1):S85-S94.PubMedCrossRefGoogle Scholar
  75. 74.
    Edwards RD, Jurvelin J, Koistinen K, Saarela K, Jantunen M. VOC source identification from personal and residential indoor, outdoor and workplace microenvironment samples in EXPOLIS-Helsinki, Finland. Atmospher Environ 2001;35:4829–4841.CrossRefGoogle Scholar
  76. 75.
    Lorz PM, Towae FK, Enke W, Jäckh R, Bhargava N Phthalic acid and derivatives. In: Ullmann's Encyclopedia of Industrial Chemistry Release 2003. Weinheim: Wiley-VCH, 2002.Google Scholar
  77. 76.
    Kavlock R, Boekelheide K, Chapin R, et al. NTP Center for the Evaluation of Risks to Human Reproduction: phthalates expert panel report on the reproductive and developmental toxicity of di-n-octyl phthalate. Reprod Toxicol 2002;16(5):721–734.PubMedCrossRefGoogle Scholar
  78. 77.
    Kavlock R, Boekelheide K, Chapin R, et al. NTP Center for the Evaluation of Risks to Human Reproduction: phthalates expert panel report on the reproductive and developmental toxicity of di(2-ethylhexyl) phthalate. Reprod Toxicol 2002;16(5): 529–653.PubMedCrossRefGoogle Scholar
  79. 78.
    Kavlock R, Boekelheide K, Chapin R, et al. NTP Center for the Evaluation of Risks to Human Reproduction: phthalates expert panel report on the reproductive and developmental toxicity of di-n-butyl phthalate. Reprod Toxicol 2002;16(5): 489–527.PubMedCrossRefGoogle Scholar
  80. 79.
    Kavlock R, Boekelheide K, Chapin R, et al. NTP Center for the Evaluation of Risks to Human Reproduction: phthalates expert panel report on the reproductive and developmental toxicity of butyl benzyl phthalate. Reprod Toxicol 2002;16(5):453–487.PubMedCrossRefGoogle Scholar
  81. 80.
    Kavlock R, Boekelheide K, Chapin R, et al. NTP Center for the Evaluation of Risks to Human Reproduction: phthalates expert panel report on the reproductive and developmental toxicity of di-n-hexyl phthalate. Reprod Toxicol 2002;16(5): 709–719.PubMedCrossRefGoogle Scholar
  82. 81.
    Kavlock R, Boekelheide K, Chapin R, et al. NTP Center for the Evaluation of Risks to Human Reproduction: phthalates expert panel report on the reproductive and developmental toxicity of diisononyl phthalate. Reprod Toxicol 2002;16(5): 679–708.PubMedCrossRefGoogle Scholar
  83. 82.
    Kavlock R, Boekelheide K, Chapin R, et al. NTP Center for the Evaluation of Risks to Human Reproduction: phthalates expert panel report on the reproductive and developmental toxicity of di-isodecyl phthalate. Reprod Toxicol 2002;16(5): 655–678.PubMedCrossRefGoogle Scholar
  84. 83.
    Calafat AM, Slakman AR, Silva MJ, Herbert AR, Needham LL. Automated solid phase extraction and quantitative analysis of human milk for 13 phthalate metabolites. J Chromatogr B Analyt Technol Biomed Life Sci 2004;805(1):49–56.PubMedCrossRefGoogle Scholar
  85. 84.
    Wilson NK, Chuang JC, Lyu C. Levels of persistent organic pollutants in several child day care centers. J Expo Anal Environ Epidemiol 2001;11(6): 449–458.PubMedCrossRefGoogle Scholar
  86. 85.
    Adibi JJ, Perera FP, Jedrychowski W, et al. Prenatal exposures to phthalates among women in New York City and Krakow, Poland. Environ Health Perspect 2003;111(14):1719–1722.PubMedCrossRefGoogle Scholar
  87. 86.
    Øie L, Hersoug LG, Madsen JØ. Residential exposure to plasticizers and its possible role in the pathogenesis of asthma. Environ Health Perspect 1997;105(9):972–978.PubMedCrossRefGoogle Scholar
  88. 87.
    Blount BC, Milgram KE, Silva MJ, et al. Quantitative detection of eight phthalate metabolites in human urine using HPLC-APCI-MS/MS. Anal Chem 2000;72(17):4127–4134.PubMedCrossRefGoogle Scholar
  89. 88.
    Koch HM, Rossbach B, Drexler H, Angerer J. Internal exposure of the general population to DEHP and other phthalates-determination of secondary and primary phthalate monoester metabolites in urine. Environ Res 2003;93(2):177–185.PubMedCrossRefGoogle Scholar
  90. 89.
    Kato K, Silva MJ, Reidy JA, et al. Mono(2-ethyl-5-hydroxyhexyl) phthalate and mono-(2-ethyl-5-oxohexyl) phthalate as biomarkers for human exposure assessment to di-(2-ethylhexyl) phthalate. Environ Health Perspect 2004;112(3):327–330.PubMedCrossRefGoogle Scholar
  91. 90.
    Blount BC, Silva MJ, Caudill SP, et al. Levels of seven urinary phthalate metabolites in a human reference population. Environ Health Perspect 2000;108(10):979–982.PubMedCrossRefGoogle Scholar
  92. 91.
    Brock JW, Caudill SP, Silva MJ, Needham LL, Hilborn ED. Phthalate monoesters levels in the urine of young children. Bull Environ Contam Toxicol 2002;68(3):309–314.PubMedCrossRefGoogle Scholar
  93. 92.
    Silva MJ, Barr DB, Reidy JA, et al. Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999–2000. Environ Health Perspect 2004;112(3):331–338.PubMedCrossRefGoogle Scholar
  94. 93.
    Barr DB, Silva MJ, Kato K, et al. Assessing human exposure to phthalates using monoesters and their oxidized metabolites as biomarkers. Environ Health Perspect 2003;111(9):1148–1151.PubMedCrossRefGoogle Scholar
  95. 94.
    Koch HM, Bolt HM, Preuss R, Angerer J. New metabolites of di(2-ethylhexyl)phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP. Arch Toxicol 2005;79: 367–376.PubMedCrossRefGoogle Scholar
  96. 95.
    Preuss R, Koch HM, Angerer J. Biological monitoring of the five major metabolites of di-(2-ethylhexyl) phthalate (DEHP) in human urine using column-switching liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2005;816(1–2): 269–280.PubMedGoogle Scholar
  97. 96.
    Duty SM, Calafat AM, Silva MJ, Ryan L, Hauser R. Phthalate exposure and reproductive hormones in adult men. Hum Reprod 2005;20(3):604–610.PubMedCrossRefGoogle Scholar
  98. 97.
    Hoppin JA, Brock JW, Davis BJ, Baird DD. Reproducibility of urinary phthalate metabolites in first morning urine samples. Environ Health Perspect 2002;110(5):515–518.PubMedCrossRefGoogle Scholar
  99. 98.
    Hauser R, Meeker JD, Park S, Silva MJ, Calafat AM. Temporal variability of urinary phthalate metabolite levels in men of reproductive age. Environ Health Perspect 2004;112:1734–1740.PubMedCrossRefGoogle Scholar
  100. 99.
    Koch HM, Drexler H, Angerer J. An estimation of the daily intake of di(2-ethylhexyl)phthalate (DEHP) and other phthalates in the general population. Int J Hyg Environ Health 2003;206(2):77–83.PubMedCrossRefGoogle Scholar
  101. 100.
    David RM. Commentary regarding the article by Koch et al. An estimation of the daily intake of di(2-ethylhexyl)phthalate (DEHP) and other phthalates in the general population. Int J Hyg Environ Health 2003;206:77–83; Int J Hyg Environ Health 2004; 207:75–76.CrossRefGoogle Scholar
  102. 101.
    Kambia K, Dine T, Gressier B, et al. Evaluation of childhood exposure to di(2-ethylhexyl) phthalate from perfusion kits during long-term parenteral nutrition. Int J Pharm 2003;262(1–2):83–91.PubMedCrossRefGoogle Scholar
  103. 102.
    Calafat AM, Needham LL, Silva MJ, Lambert G. Exposure to di-(2-ethylhexyl) phthalate among premature neonates in a neonatal intensive care unit. Pediatrics 2004;113(5):e429-e434.PubMedCrossRefGoogle Scholar
  104. 103.
    NTP. Report on Carcinogens 11th edition, di(2-ethylhexyl) phthalate CAS No. 117-81-7: National Toxicology Program.Google Scholar
  105. 104.
    Babich MA, Chen SB, Greene MA, et al. Risk assessment of oral exposure to diisononyl phthalate from children's products. Regul Toxicol Pharmacol 2004; 40(2):151–167.PubMedCrossRefGoogle Scholar
  106. 105.
    Kato K, Silva MJ, Brock JW, et al. Quantitative detection of nine phthalate metabolites in human serum using reversed-phase high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. J Anal Toxicol 2003;27(5):284–289.PubMedGoogle Scholar
  107. 106.
    Larsen ST, Hansen JS, Thygesen P, Begtrup M, Poulsen OM, Nielsen GD. Adjuvant and immuno-suppressive effect of six monophthalates in a subcutaneous injection model with BALB/c mice. Toxicology 2001;169(1):37–51.PubMedCrossRefGoogle Scholar
  108. 107.
    Larsen ST, Lund RM, Nielsen GD, Thygesen P, Poulsen OM. Adjuvant effect of di-n-butyl-, di-n-octyl-, di-iso-nonyl-and di-iso-decyl phthalate in a subcutaneous injection model using BALB/c mice. Pharmacol Toxicol 2002;91(5):264–272.PubMedCrossRefGoogle Scholar
  109. 108.
    Larsen ST, Lund RM, Thygesen P, Poulsen OM, Nielsen GD. Investigation of the adjuvant and immuno-suppressive effects of benzyl butyl phthalate, phthalaic acid and benzyl alcohol in a murine injection model. Food Chem Toxicol 2003;41(3):439–446.PubMedCrossRefGoogle Scholar
  110. 109.
    Bornehag CG, Sundell J, Weschler CJ, et al. The association between asthma and allergic symptoms in children and phthalates in house dust: a nested case-control study. Environ Health Perspect 2004;112: 1393–1397.PubMedCrossRefGoogle Scholar
  111. 110.
    Jaakkola JJ, Øie L, Nafstad P, Botten G, Samuelsen SO, Magnus P. Interior surface materials in the home and the development of bronchial obstruction in young children in Oslo, Norway. Am J Public Health 1999;89(2):188–192.PubMedGoogle Scholar
  112. 111.
    Øie L, Nafstad P, Botten G, Magnus P, Jaakkola JK. Ventilation in homes and bronchial obstruction in young children. Epidemiology 1999;10(3):294–299.PubMedCrossRefGoogle Scholar
  113. 112.
    Clausen PA, Hansen V, Gunnarsen L, Afshari A, Wolkoff P. Emission of di-2-ethylhexyl phthalate from PVC flooring into air and uptake in dust: emission and sorption experiments in FLEC and CLIMPAQ. Environ Sci Technol 2004;38(9):2531–2537.PubMedCrossRefGoogle Scholar
  114. 113.
    Jaakkola JJ, Verkasalo PK, Jaakkola N. Plastic wall materials in the home and respiratory health in young children. Am J Public Health 2000;90(5): 797–799.PubMedGoogle Scholar
  115. 114.
    Hoppin JA, Ulmer R, London SJ. Phthalate exposure and pulmonary function. Environ Health Perspect 2004;112(5):571–574.PubMedCrossRefGoogle Scholar
  116. 115.
    Wieslander G, Norbäck D, Nordstrom K, Wąlinder R, Venge P. Nasal and ocular symptoms, tear film stability and biomarkers in nasal lavage, in relation to building-dampness and building design in hospitals. Int Arch Occup Environ Health 1999; 72(7):451–461.PubMedCrossRefGoogle Scholar
  117. 116.
    Hoffmann K, Krause C, Seifert B, Ullrich D. The German Environmental Survey 1990/92 (GerES II): sources of personal exposure to volatile organic compounds. J Expo Anal Environ Epidemiol 2000; 10(2):115–125.PubMedCrossRefGoogle Scholar
  118. 117.
    Ooi PL, Goh KT, Phoon MH, Foo SC, Yap HM. Epidemiology of sick building syndrome and its associated risk factors in Singapore. Occup Environ Med 1998;55(3):188–193.PubMedGoogle Scholar
  119. 118.
    Mylchreest E, Cattley RC, Foster PM. Male reproductive tract malformations in rats following gestational and lactational exposure to Di(n-butyl) phthalate: an antiandrogenic mechanism? Toxicol Sci 1998;43(1):47–60.PubMedGoogle Scholar
  120. 119.
    Salazar V, Castillo C, Ariznavarreta C, Campón R, Tresguerres JA. Effect of oral intake of dibutyl phthalate on reproductive parameters of Long Evans rats and pre-pubertal development of their off-spring. Toxicology 2004;205(1–2):131–137.PubMedCrossRefGoogle Scholar
  121. 120.
    Lee KY, Shibutani M, Takagi H, et al. Diverse developmental toxicity of di-n-butyl phthalate in both sexes of rat offspring after maternal exposure during the period from late gestation through lactation. Toxicology 2004;203(1–3):221–238.PubMedCrossRefGoogle Scholar
  122. 121.
    Fisher JS, Macpherson S, Marchetti N, Sharpe RM. Human ‘testicular dysgenesis syndrome’: a possible model using in-utero exposure of the rat to dibutyl phthalate. Hum Reprod 2003;18(7):1383–1394.PubMedCrossRefGoogle Scholar
  123. 122.
    Tyl RW, Myers CB, Marr MC, et al. Reproductive toxicity evaluation of dietary butyl benzyl phthalate (BBP) in rats. Reprod Toxicol 2004;18(2):241–264.PubMedCrossRefGoogle Scholar
  124. 123.
    Zhang Y, Jiang X, Chen B. Reproductive and developmental toxicity in F1 Sprague-Dawley male rats exposed to di-n-butyl phthalate in utero and during lactation and determination of its NOAEL. Reprod Toxicol 2004;18(5):669–676.PubMedCrossRefGoogle Scholar
  125. 124.
    Kai H, Shono T, Tajiri T, Suita S. Long-term effects of intrauterine exposure to mono-n-butyl phthalate on the reproductive function of postnatal rats. J Pediatr Surg 2005;40(2):429–433.PubMedCrossRefGoogle Scholar
  126. 125.
    Higuchi TT, Palmer JS, Gray LE Jr, Veeramachaneni DN. Effects of dibutyl phthalate in male rabbits following in utero, adolescent, or postpubertal exposure. Toxicol Sci 2003;72(2):301–313.PubMedCrossRefGoogle Scholar
  127. 126.
    Wilson VS, Lambright C, Furr J, et al. Phthalate ester-induced gubernacular lesions are associated with reduced insl3 gene expression in the fetal rat testis. Toxicol Lett 2004;146(3):207–215.PubMedCrossRefGoogle Scholar
  128. 127.
    Lehmann KP, Phillips S, Sar M, Foster PM, Gaido KW. Dose-dependent alterations in gene expression and testosterone synthesis in the fetal testes of male rats exposed to di (n-butyl) phthalate. Toxicol Sci 2004;81(1):60–68.PubMedCrossRefGoogle Scholar
  129. 128.
    Parks LG, Ostby JS, Lambright CR, et al. The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat. Toxicol Sci 2000;58(2):339–349.PubMedCrossRefGoogle Scholar
  130. 129.
    Stroheker T, Cabaton N, Nourdin G, Régnier JF, Lhuguenot JC, Chagnon MC. Evaluation of antiandrogenic activity of di-(2-ethylhexyl)phthalate. Toxicology 2005;208(1):115–121.PubMedCrossRefGoogle Scholar
  131. 130.
    Akingbemi BT, Youker RT, Sottas CM, et al. Modulation of rat Leydig cell steroidogenic function by di(2-ethylhexyl)phthalate. Biol Reprod 2001;65(4): 1252–1259.PubMedCrossRefGoogle Scholar
  132. 131.
    Shultz VD, Phillips S, Sar M, Foster PM, Gaido KW. Altered gene profiles in fetal rat testes after in utero exposure to di(n-butyl) phthalate. Toxicol Sci 2001;64(2):233–242.PubMedCrossRefGoogle Scholar
  133. 132.
    Mylchreest E, Sar M, Wallace DG, Foster PM. Fetal testosterone insufficiency and abnormal proliferation of Leydig cells and gonocytes in rats exposed to di(n-butyl) phthalate. Reprod Toxicol 2002; 16(1):19–28.PubMedCrossRefGoogle Scholar
  134. 133.
    Nagao T, Ohta R, Marumo H, Shindo T, Yoshimura S, Ono H. Effect of butyl benzyl phthalate in Sprague-Dawley rats after gavage administration: a two-generation reproductive study. Reprod Toxicol 2000;14(6):513–532.PubMedCrossRefGoogle Scholar
  135. 134.
    Barlow NJ, Phillips SL, Wallace DG, Sar M, Gaido KW, Foster PM. Quantitative changes in gene expression in fetal rat testes following exposure to di(n-butyl) phthalate. Toxicol Sci 2003;73(2): 431–441.PubMedCrossRefGoogle Scholar
  136. 135.
    Liu K, Lehmann KP, Sar M, Young SS, Gaido KW. Gene expression profiling following in utero exposure to phthalate esters reveals new gene targets in the etiology of testicular dysgenesis. Biol Reprod 2005;73(1):180–192.PubMedCrossRefGoogle Scholar
  137. 136.
    Akingbemi BT, Ge R, Klinefelter GR, Zirkin BR, Hardy MP. Phthalate-induced Leydig cell hyperplasia is associated with multiple endocrine disturbances. Proc Natl Acad Sci USA 2004;101(3): 775–780.PubMedCrossRefGoogle Scholar
  138. 137.
    Bowman CJ, Turner KJ, Sar M, Barlow NJ, Gaido KW, Foster PM. Altered gene expression during rat Wolffian duct development following di(n-butyl) phthalate exposure. Toxicol Sci 2005;86(1): 161–174.PubMedCrossRefGoogle Scholar
  139. 138.
    Kim HS, Saito K, Ishizuka M, Kazusaka A, Fujita S. Short period exposure to di-(2-ethylhexyl) phthalate regulates testosterone metabolism in testis of prepubertal rats. Arch Toxicol 2003;77(8):446–451.PubMedCrossRefGoogle Scholar
  140. 139.
    Foster PM, Cattley RC, Mylchreest E., Effects of diHh-butyl phthalate (DBP) on male reproductive development in the rat: implications for human risk assessment. Food Chem Toxicol 2000;38(1 Suppl): S97-S99.PubMedCrossRefGoogle Scholar
  141. 140.
    Kessler W, Numtip W, Grote K, Csanády GA, Chahoud I, Filser JG. Blood burden of di(2-ethylhexyl) phthalate and its primary metabolite mono(2-ethylhexyl) phthalate in pregnant and nonpregnant rats and marmosets. Toxicol Appl Pharmacol 2004;195:142–153.PubMedCrossRefGoogle Scholar
  142. 141.
    Silva MJ, Barr DB, Reidy JA, et al. Glucuronidation patterns of common urinary and serum monoester phthalate metabolites. Arch Toxicol 2003;77(10): 561–567.PubMedCrossRefGoogle Scholar
  143. 142.
    Koch HM, Bolt HM, Angerer J. Di(2-ethylhexyl) phthalate (DEHP) metabolites in human urine and serum after a single oral dose of deuterium-labelled DEHP. Arch Toxicol 2004;78(3):123–130.PubMedCrossRefGoogle Scholar
  144. 143.
    Latini G, De Felice C, Presta G, et al. In utero exposure to di-(2-ethylhexyl)phthalate and duration of human pregnancy. Environ Health Perspect 2003; 111(14):1783–1785.PubMedCrossRefGoogle Scholar
  145. 144.
    Fisher JS. Environmental anti-androgens and male reproductive health: focus on phthalates and testicular dysgenesis syndrome. Reproduction 2004; 127(3):305–315.PubMedCrossRefGoogle Scholar
  146. 145.
    Duty SM, Singh NP, Silva MJ, et al. The relationship between environmental exposures to phthalates and DNA damage in human sperm using the neutral comet assay. Environ Health Perspect 2003;111(9):1164–1169.PubMedCrossRefGoogle Scholar
  147. 146.
    Duty SM, Silva MJ, Barr DB, et al. Phthalate exposure and human semen parameters. Epidemiology 2003;14(3):269–277.PubMedCrossRefGoogle Scholar
  148. 147.
    Voss C, Zerban H, Bannasch P, Berger MR. Lifelong exposure to di-(2-ethylhexyl)-phthalate induces tumors in liver and testes of Sprague-Dawley rats. Toxicology 2005;206(3):359–371.PubMedCrossRefGoogle Scholar
  149. 148.
    International Agency for Research on Cancer (IARC). IARC monographs on the Evaluation of Carcinogenic Risks to Humans. Some Industrial Chemicals. World Health Organization, Lyon 2000;77. Available from: Last accessed: June 15, 2005.Google Scholar
  150. 149.
    Brody C, DiGangi J, Easthope T, Rossi M, Schettler T. [IARC downgrading of DEHP. Health Care Without Harm letter]. Int J Occup Environ Health 2003;9:399–400.PubMedGoogle Scholar
  151. 150.
    Melnick RL, Brody C, Huff J. The IARC evaluation of DEHP excludes key papers demonstrating carcinogeic effects. Int J Occup Environ Health 2003;9(4):400–402.PubMedGoogle Scholar
  152. 151.
    Davis JR, Brownson RC, Garcia R. Family pesticide use in the home, garden, orchard, and yard. Arch Environ Contam Toxicol 1992;22(3):260–266.PubMedCrossRefGoogle Scholar
  153. 152.
    Landrigan PJ, Claudio L, Markowitz SB, et al. Pesticides and inner-city children: exposures, risks, and prevention. Environ Health Perspect 1999; 107(Suppl 3):431–437.PubMedGoogle Scholar
  154. 153.
    Berkowitz GS, Obel J, Deych E, et al. Exposure to indoor pesticides during pregnancy in a multiethnic urban cohort. Environ Health Perspect 2003;111(1):79–84.PubMedCrossRefGoogle Scholar
  155. 154.
    Whyatt RM, Barr DB, Camann DE, et al. Contemporary-use pesticides in personal air samples during pregnancy and blood samples at delivery pregnancy and blood samples at delivery among urban minority mothers and newborns. Environ Health Perspect 2003;111(5):749–756.PubMedCrossRefGoogle Scholar
  156. 155.
    Garfitt SJ, Jones K, Mason HJ, Cocker J. Exposure to the organophosphate diazinon: data drom a humans volunteer study with oral and dermal doses. Toxicol Lett 2002;134(1–3):105–113.PubMedCrossRefGoogle Scholar
  157. 156.
    Garfitt SJ, Jones K, Mason HJ, Cocker J. Development of a urinary biomarker for exposure to the organophosphate propetamphos: data from an oral and dermal human volunteer study. Biomarkers 2002;7(2):113–122.PubMedCrossRefGoogle Scholar
  158. 157.
    Griffin P, Mason H, Heywood K, Cocker J. Oral and dermal absorption of chlorpyrifos: a human volunteer study. Occup Environ Med 1999;56:(1):10–13.PubMedGoogle Scholar
  159. 158.
    Nolan RJ, Rick DL, Freshour NL, Saunders JH. Chlorpyrifos: pharmacokinetics in human volunteers. Toxicol Appl Pharmacol 1984;73(1):8–15.PubMedCrossRefGoogle Scholar
  160. 159.
    Eskenazi B, Bradman A, Castorina R. Exposures of children to organophosphate pesticides and their potential adverse health effects. Environ Health Perspect 1999;107 Suppl 3:409–419.PubMedGoogle Scholar
  161. 160.
    Akland GG, Pellizzari ED, Hu Y, et al. Factors in-fluencing total dietary exposures of young children. J Expo Anal Environ Epidemiol 2000;10(6 Pt 2):710–722.PubMedCrossRefGoogle Scholar
  162. 161.
    Fenske RA, Black KG, Elkner KP, Lee C-L, Methner MM, Soto R. Potential exposure and health risks of infants following indoor residential pesticide applications. Am J Public Health 1990;80(6):689–693.PubMedGoogle Scholar
  163. 162.
    Gurunathan S, Robson M, Freeman N, et al. Accumulation of chlorpyrifos on residential surfaces and toys accessible to children. Environ Health Perspect 1998;106(1):9–16.PubMedCrossRefGoogle Scholar
  164. 163.
    Clayton CA, Pellizzari ED, Whitmore RW, Quackenboss JJ, Adgate J, Sefton K. Distributions, associatios, and partial aggregate exposure of pesticides and polynuclear aromatic hydrocarbons in the Minnesota Children's Pesticide Exposure Study (MNCPES). J Expo Anal Environ Epidemiol 2003; 13(2):100–111.CrossRefGoogle Scholar
  165. 164.
    MacIntosh DL, Kabiru CW, Ryan PB. Longitudinal investigation of dietary exposure to selected pesticides. Environ Health Perspect 2001;109(2):145–150.PubMedCrossRefGoogle Scholar
  166. 165.
    Fenske RA, Kedan G, Lu C, Fisker-Andersen J, Curl CL. Assessment of organophosphorous pesticide exposures in the diets of preschool children in Washington State. J Expo Anal Environ Epidemiol 2002;12(1):21–28.PubMedCrossRefGoogle Scholar
  167. 166.
    Simcox NJ, Fenske RA, Wolz SA, Lee IC, Kalman DA. Pesticides in household dust and soil: exposure pathways for children of agricultural families. Environ Health Perspect 1995;103(12):1126–1134.PubMedCrossRefGoogle Scholar
  168. 167.
    Fenske RA, Lu C, Barr D, Needham L., Children's exposure to chlorpyrifos and parathion in an agricultural community in central Washington State. Environ Health Perspect 2002;110(5):549–553.PubMedCrossRefGoogle Scholar
  169. 168.
    Curl CL, Fenske RA, Kissel JC, et al. Evaluation of take-home organophosphorus pesticide exposure among agricultural workers and their children. Environ Health Perspect 2002;110(12):A787-A972.PubMedCrossRefGoogle Scholar
  170. 169.
    Lu C, Fenske RA, Simcox NJ, Kalman D. Pesticide exposure of children in an agricultural community: evidence of household proximity to farmland and take home exposure pathways. Environ Res 2000;84(3):290–302.PubMedCrossRefGoogle Scholar
  171. 170.
    McCauley LA, Lasarev MR, Higgins G, et al. Work characteristics and pesticide exposures among migrant agricultural families: a community-based research approach. Environ Health Perspect 2001; 109(5):533–538.PubMedCrossRefGoogle Scholar
  172. 171.
    MacIntosh DL, Spengler JD, Özkaynak H, Tsai L, Ryan PB. Dietary exposures to selected metals and pesticides. Environ Health Perspect 1996;104(2):202–209.PubMedCrossRefGoogle Scholar
  173. 172.
    Pang Y, MacIntosh DL, Camann DE, Ryan PB. Analysis of aggregate exposure to chlorpyrifos in the NHEXAS-Maryland investigation. Environ Health Perspect 2002;110(3):235–240.PubMedCrossRefGoogle Scholar
  174. 173.
    MacIntosh DL, Kabiru C, Echols SL, Ryan PB. Dietary exposure to chlorpyrifos and levels of 3,5,6-trichloro-2-pyridinol in urine. J Expo Anal Environ Epidemiol 2001;11(4):279–285.PubMedCrossRefGoogle Scholar
  175. 174.
    Barr DB, Barr JR, Maggio VL, et al. A multi-analyte method for the quantification of contemporary pesticides in human serum and plasma using high-resolution mass spectrometry J Chromatogr B Analyt Technol Biomed Life Sci 2002;778(1–2):99–111.PubMedGoogle Scholar
  176. 175.
    Meeker JD, Ryan L, Barr DB, et al. The relationship of urinary metabolites of carbaryl/naphthalene and chlorpyrifos with human semen quality. Environ Health Perspect 2004;112(17):1665–1670.PubMedCrossRefGoogle Scholar
  177. 176.
    O'Rourke MK, Lizardi PS, Rogan SP, Freeman NC, Aguirre A, Saint CG. Pesticide exposure and creatinine variation among young children. J Expo Anal Environ Epidemiol 2000;10(6 Pt 2):672–681.PubMedCrossRefGoogle Scholar
  178. 177.
    Bradman A, Barr DB, Claus Henn BG, Drumheller T, Curry C, Eskenazi B. Measurement of pesticides and other toxicants in amniotic fluid as a potential biomarker of prenatal exposure: a validation study. Environ Health Perspect 2003;111(14):1779–1782.PubMedCrossRefGoogle Scholar
  179. 178.
    Whyatt RM, Barr DB. Measurement of organophosphate metabolites in postpartum meconium as a potential biomarker of prenatal exposure: a validation study. Environ Health Perspect 2001;109(4):417–420.PubMedCrossRefGoogle Scholar
  180. 179.
    Ostrea EM, Jr., Morales V, Ngoumgna E, et al. Prevalence of fetal exposure to environmental toxins as determined by meconium analysis. Neurotoxicology 2002;23(3):329–339.PubMedCrossRefGoogle Scholar
  181. 180.
    Aprea C, Strambi M, Novelli MT, Lunghini L, Bozzi N. Biologic monitoring of exposure to organophosphorus pesticides in 195 Italian children. Environ Health Perspect 2000;108(6):521–525.PubMedCrossRefGoogle Scholar
  182. 181.
    Adgate JL, Barr DB, Clayton CA, et al. Measurement of children's exposure to pesticides: analysis of urinary metabolite levels in a probability-based sample. Environ Health Perspect 2001;109(6):583–590.PubMedCrossRefGoogle Scholar
  183. 182.
    Lu C, Knutson DE, Fisker-Anderson J, Fenske RA. Biological monitoring survey of organophosphorus pesticide exposure among pre-school children in the Seattle metropolitan area. Environ Health Perspect 2001;109(3):299–303PubMedCrossRefGoogle Scholar
  184. 183.
    Koch D, Lu C, Fisker-Andersen J, Jolley L, Fenske RA. Temporal association of children's pesticide exposure and agricultural spraying: report of a longitudinal biological monitoring study. Environ Health Perspect 2002;110(8):829–833.PubMedCrossRefGoogle Scholar
  185. 184.
    Curl CL, Fenske RA, Elgethun K. Organophosphorus pesticide exposure of urban and suburban preschool children with organic and conventional diets. Environ Health Perspect 2003;111(3):377–382.PubMedCrossRefGoogle Scholar
  186. 185.
    Fenske RA, Kissel JC, Lu C, et al. Biologically based pesticide dose estimates for children in an agricultural community. Environ Health Perspect 2000;108(6):515–520.PubMedCrossRefGoogle Scholar
  187. 186.
    Castorina R, Bradman A, McKone TE, Barr DB, Harnly ME, Eskenazi B. Cumulative organophosphate pesticide exposure and risk assessment among pregnant women living in an agricultural community: a case study from the CHMACOS cohort. Environ Health Perspect 2003;111(13):1640–1648.PubMedCrossRefGoogle Scholar
  188. 187.
    Azaroff LS, Neas LM. Acute health effects associated with nonoccupational pesticide exposure in rural El Salvador. Environ Res 1999;80(2 Pt 1):158–164.PubMedCrossRefGoogle Scholar
  189. 188.
    Chanda SM, Pope CN. Neurochemical and neurobehavioral effects of repeated gestational exposure to chlorpyrifos in maternal and developing rats. Pharmacol Biochem Behav 1996;53(4):771–776.PubMedCrossRefGoogle Scholar
  190. 189.
    Ahlbom J, Fredriksson A, Eriksson P. Exposure to an organophosphate (DFP) during a defined period in neonatal life induces permanent changes in brain muscarinic receptors and behaviour in adult mice. Brain Res 1975;677(1):13–19.CrossRefGoogle Scholar
  191. 190.
    Slotkin TA, Cousins MM, Tate CA, Seidler FJ. Persistent cholinergic presynaptic deficits after neonatal chlorpyrifos exposure. Brain Res 2001;902(2):229–243.PubMedCrossRefGoogle Scholar
  192. 191.
    Eriksson P, Fredriksson A. Neurotoxic effects of two different pyrethroids, bioallethrin and deltamethrin, on immature and adult mice: changes in behavioral and muscarinic receptor variables. Toxicol Appl Pharmacol 1991;108(1):78–85.PubMedCrossRefGoogle Scholar
  193. 192.
    Gupta RC, Rech RH, Lovell KL, Welsch F, Thornburg JE. Brain cholinergic, behavioral, and morphological development in rats exposed in utero to methylparathion. Toxicol Appl Pharmacol 1985; 77(3):405–413.PubMedCrossRefGoogle Scholar
  194. 193.
    Dam K, Garcia SJ, Seidler FJ, Slotkin TA. Neonatal chlorpyrifos exposure alters synaptic development and neuronal activity in cholinergic and catecholaminergic pathways. Brain Res Dev Brain Res 1999;116(1):9–20.PubMedCrossRefGoogle Scholar
  195. 194.
    Song X, Seidler FJ, Saleh JL, Zhang J, Padilla S, Slotkin TA. Cellular mechanisms for developmental toxicity of chlorpyrifos: targeting the adenylyl cyclase signaling cascade. Toxicol Appl Pharmacol 1997;145(1):158–174.PubMedCrossRefGoogle Scholar
  196. 195.
    Dam K, Seidler FJ, Slotkin TA. Developmental neurotoxicity of chlorpyrifos: delayed targeting of DNA synthesis after repeated administration. Brain Res Dev Brain Res 1998;108(1–2):39–45.PubMedCrossRefGoogle Scholar
  197. 196.
    Johnson DE, Seidler FJ, Slotkin TA. Early biochemical detection of delayed neurotoxicity resulting from developmental exposure to chloropyrifos. Brain Res Bull 1998;45(2):143–147.PubMedCrossRefGoogle Scholar
  198. 197.
    Young JG, Eskenazi B, Gladstone EA, et al. Association between in utero organophosphate pesticide exposure and abnormal reflexes in neonates. Neurotoxicology 2005;26(2):199–209.PubMedCrossRefGoogle Scholar
  199. 198.
    Guillette EA, Meza MM, Aquilar MG, Soto AD, Garcia IE. An anthropological approach to the evaluation of preschool children exposed to pesticides in Mexico. Environ Health Perspect 1998;106(6):347–353.PubMedCrossRefGoogle Scholar
  200. 199.
    Eskenazi B, Harley K, Bradman A, et al. Association of in utero organophosphate pesticide exposure and fetal growth and length of gestation in an agricultural population. Environ Health Perspect 2004;112(10):1116–1124.PubMedCrossRefGoogle Scholar
  201. 200.
    Perera FP, Rauh V, Tsai WY, et al. Effects of transplacental exposure to environmental pollutants on birth outcomes in a multiethnic population. Environ Health Perspect 2003;111(2):201–205.PubMedCrossRefGoogle Scholar
  202. 201.
    Whyatt RM, Rauh V, Barr DB, et al. Prenatal insecticide exposures and birth weight and length among an urban minority cohort. Environ Health Perspect 2004;112(10):1125–1132.PubMedCrossRefGoogle Scholar
  203. 202.
    Berkowitz GS, Wetmur JG, Birman-Deych E, et al. In utero pesticide exposure, maternal paraoxonase activity, and head circumference Environ Health Perspect 2004;112(3):388–391.PubMedCrossRefGoogle Scholar
  204. 203.
    Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci 2000;3(12):1301–1306.PubMedCrossRefGoogle Scholar
  205. 204.
    Butterfield PG, Valanis BG, Spencer PS, Lindeman CA, Nutt JG. Environmental antecedents of young-onset Parkinson's disease. Neurology 1993;43(6):1150–1158.PubMedGoogle Scholar
  206. 205.
    Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Richardson RJ. The risk of Parkinson's disease with exposure to pesticides, farming well water, and rural living. Neurology 1998;50(5):1346–1350.PubMedGoogle Scholar
  207. 206.
    Menegon A, Board PG, Blackburn AC, Mellick GD, Le Couteur DG. Parkinson's disease, pesticides, and glutathione transferase polymorphisms Lancet 1998;352(9137):1344–1346.PubMedCrossRefGoogle Scholar
  208. 207.
    Gorell JM, Peterson EL, Rybicki BA, Johnson CC. Multiple risk factors for parkinson's disease. J Neurol Sci 2004;217(2):169–174.PubMedCrossRefGoogle Scholar
  209. 208.
    Fall PA, Fredrikson M, Axelson O, Granérus AK. Nutritional and occupational factors influencing the risk of Parkinson's disease: a case-control study in southeastern Sweden. Mov Disord 1999;14(1):28–37.PubMedCrossRefGoogle Scholar
  210. 209.
    Firestone JA, Smith-Weller T, Franklin C, Swanson P, Longstreth WT, Jr., Checkoway H. Pesticides and risk of Parkinson disease: a population-based case-control study. Arch Neurol 2005;62(1):91–95.PubMedCrossRefGoogle Scholar
  211. 210.
    Nuti A, Ceravolo R, Dell'Agnello G, et al. Environmental factors and Parkinson's disease: a case-control study in the Tuscany region of Italy. Parkinsonism Relat Disord 2004;10(8):481–485.PubMedCrossRefGoogle Scholar
  212. 211.
    Blair A, Grauman DJ, Lubin JH, Fraumeni JF, Jr. Lung cancer and other causes of death among licensed pesticide applicators. J Natl Cancer Inst 1983;71(1):31–37.PubMedGoogle Scholar
  213. 212.
    Alavanja MC, Dosemeci M, Samanic C, et al. Pesticides and lung cancer risk in the agricultural health study cohort. Am J Epidemiol 2004;160(9):876–885.PubMedCrossRefGoogle Scholar
  214. 213.
    Lee WJ, Blair A, Hoppin JA, et al. Cancer incidence among pesticide applicators exposed to chlorpyrifos in the Agricultural Health Study. J Natl Cancer Inst 2004;96(23):1781–1789.PubMedCrossRefGoogle Scholar
  215. 214.
    De Roos AJ, Blair A, Rusiecki JA, et al. Cancer incidence among glyphosate-exposed pesticide applicators in the agricultural health study. Environ Health Perspect 2005;113(1):49–54.PubMedGoogle Scholar
  216. 215.
    Zahm SH, Ward MH. Pesticides and childhood cancer. Environ Health Perspect 1998;106(Suppl 3):893–908.PubMedCrossRefGoogle Scholar
  217. 216.
    Daniels JL, Olshan AF, Savitz DA. Pesticides and childhood cancers. Environ Health Perspect 1997;105(10):1068–1077.PubMedCrossRefGoogle Scholar
  218. 217.
    Fryer AD, Lein PJ, Howard AS, Yost BL, Beckles RA, Jett DA. Mechanisms of organophosphate insecticide-induced airway hyperreactivity. Am J Physiol Lung Cell Mol Physiol 2004;286(5):L963-L969.PubMedCrossRefGoogle Scholar
  219. 218.
    Lein PJ, Fryer AD. Organophosphorus insecticides induce airway hyperreactivity by decreasing neuronal M2 muscarinic receptor function independent of acetylcholinesterase inhibition. Toxicol Sci 2005;83(1):166–176.PubMedCrossRefGoogle Scholar
  220. 219.
    Segura P, Chávez J, Montaño LM, et al. Identification of mechanisms involved in the acute airway toxicity induced by parathion. Naunyn Schmiedebergs Arch Pharmacol 1999;360(6):699–710.PubMedCrossRefGoogle Scholar
  221. 220.
    Hoppin JA, Umbach DM, London SJ, Alavanja MC, Sandler DP. Chemical predictors of wheeze among farmer pesticide applicators in the Agricultural Health Study. Am J Respir Crit Care Med 2002;165(5):683–689.PubMedGoogle Scholar
  222. 221.
    Brouwer A, Ahlborg UG, van Leeuwen FX, Feeley MM. Report of the WHO working group on the assessment of health risks for human infants from exposure to PCDDs, PCDFs and PCBs. Chemosphere 1998;37(9–12):1627–1643.PubMedCrossRefGoogle Scholar
  223. 222.
    Breivik K, Sweetman A, Pacyna JM, Jones KC. Towards a global historical emission inventory for se lected PCB congeners—a mass balance approach. 1. Global production and consumption. Sci Total Environ 2002; 290 (1–3): 181–198.PubMedCrossRefGoogle Scholar
  224. 223.
    Breivik K, Sweetman A, Pacyna JM, Jones KC. Towards a global historical emission inventory for selected PCB congeners—a mass balance approach. 2. Emissions. Sci Total Environ 2002; 290 (1–3): 199–224.PubMedCrossRefGoogle Scholar
  225. 224.
    Meijer SN, Ockenden WA, Sweetman A, Breivik K, Grimalt JO, Jones KC. Global distribution and budget of PCBs and HCB in background surface soils: implications for sources and environmental processes. Environ Sci Technol 2003; 37 (4): 667–672.PubMedCrossRefGoogle Scholar
  226. 225.
    Jönsson A, Gustafsson Ö, Axelman J, Sundberg H. Global accounting of PCBs in the continental shelf sediments. Environ Sci Technol 2003; 37 (2): 245–255.PubMedCrossRefGoogle Scholar
  227. 226.
    Van den Berg M, Birnbaum L, Bosveld AT, et al. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ Health Perspect 1998; 106 (12): 775–792.PubMedCrossRefGoogle Scholar
  228. 227.
    Nawrot TS, Staessen JA, Den Hond EM, et al. Host and environmental determinants of polychlorinated aromatic hydrocarbons in serum of adolescents. Environ Health Perspect 2002; 110 (6): 583–589.PubMedCrossRefGoogle Scholar
  229. 228.
    DeVoto E, Kohlmeier L, Heeschen W. Some dietary predictors of plasma organochlorine concentrations in an elderly German population. Arch Environ Health 1998; 53 (2): 147–155.PubMedGoogle Scholar
  230. 229.
    Kiviranta H, Ovaskainen ML, Vartiainen T. Market basket study on dietary intake of PCDD/Fs, PCBs, and PBDEs in Finland. Environ Int 2004; 30 (7): 923–932.PubMedCrossRefGoogle Scholar
  231. 230.
    Moysich KB, Ambrosone CB, Mendola P, et al. Exposures associated with serum organochlorine levels among postmenopausal women from western New York State. Am J Ind Med 2002; 41 (2): 102–110.PubMedCrossRefGoogle Scholar
  232. 231.
    Sjödin A, Hagmar L, Klasson-Wehler E, Björk J, Bergman A. Influence of the consumption of fatty Baltic Sea fish on plasma levels of halogenated environmental contaminants in Latvian and Swedish men. Environ Health Perspect 2000; 108 (11): 1035–1041.PubMedCrossRefGoogle Scholar
  233. 232.
    Laden F, Neas LM, Spiegelman D, et al. Predictors of plasma concentrations of DDE and PCBs in a group of U.S. women. Environ Health Perspect 1999; 107 (1): 75–81.PubMedCrossRefGoogle Scholar
  234. 233.
    Hanrahan LP, Falk C, Anderson HA, et al. Serum PCB and DDE levels of frequent Great Lakes sport fish consumers-a first look. Environ Res 1999; 80 (2 Pt 2): S26-S37.PubMedCrossRefGoogle Scholar
  235. 234.
    Svensson BG, Nilsson A, Hansson M, Rappe C, Akesson B, Skerfving S. Exposure to dioxins and dibenzofurans through the consumption of fish. N Engl J Med 1991; 324 (1): 8–12.PubMedCrossRefGoogle Scholar
  236. 235.
    Macdonal RW, Barrie LA, Bidleman TF, et al. Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways. Sci Total Environ 2000; 254 (2–3): 93–234.PubMedCrossRefGoogle Scholar
  237. 236.
    Mulvad G, Pedersen HS, Hansen JC, et al. Exposure of Greenlandic Inuit to organochlorines and heavy metals through the marine food-chain: an international study. Sci Total Environ 1996; 186 (1–2): 137–139.PubMedGoogle Scholar
  238. 237.
    Bjerregaard P, Dewailly E, Ayotte P, Pars T, Ferron L, Mulvad G. Exposure of Inuit in Greenland to organochlorines through the marine diet. J Toxicol Environ Health A 2001; 62 (2): 69–81.PubMedCrossRefGoogle Scholar
  239. 238.
    Bjerregaard P, Hansen JC. Organochlorines and heavy metals in pregnant women from the Disko Bay area in Greenland. Sci Total Environ 2000; 245 (1–3): 195–202.PubMedCrossRefGoogle Scholar
  240. 239.
    Schecter A, Startin J, Wright C, et al. Congener-specific levels of dioxins and dibenzofurans in U.S. food and estimated daily dioxin toxic equivalent intake. Environ Health Perspect 1994; 102 (11): 962–966.PubMedCrossRefGoogle Scholar
  241. 240.
    Buckley-Golder D, King K, Brown K. Compilation of EU Dioxin Exposure and Health Data. Summary Report: European Commission DG Environment, UK Department of the Environment Transport and the Regions (DETR), 1999.Google Scholar
  242. 241.
    Patandin S, Dagnelie PC, Mulder PG, et al. Dietary exposure to polychlorinated biphenyls and dioxins from infancy until adulthood: A comparison between breast-feeding, toddler, and long-term exposure. Environ Health Perspect 1999; 107 (1): 45–51.PubMedCrossRefGoogle Scholar
  243. 242.
    Wittsiepe J, Schrey P, Wilhelm M. Dietary intake of PCDD/F by small children with different food consumption measured by the duplicate method. Chemosphere 2001; 43 (4–7): 881–887.PubMedCrossRefGoogle Scholar
  244. 243.
    van Leeuwen FX, Feeley M, Schrenk D, Larsen JC, Farland W, Younes M. Dioxins: WHO's tolerable daily intake (TDI) revisited. Chemosphere 2000; 40 (9–11): 1095–1101.PubMedGoogle Scholar
  245. 244.
    Link B, Gabrio T, Zoellner I, et al. Biomonitoring of persistent organochlorine pesticides, PCDD/PCDFs and dioxin-like PCBs in blood of children from South West Germany (Baden-Wuerttemberg) from 1993 to 2003. Chemosphere 2005; 58 (9): 1185–1201.PubMedCrossRefGoogle Scholar
  246. 245.
    Mes J. Trends in the levels of some chlorinated hydrocarbon residues in adipose tissue of Canadians. Environ Pollut 1990; 65 (3): 269–278.PubMedCrossRefGoogle Scholar
  247. 246.
    Mes J. Temporal changes in some chlorinated hydrocarbon residue levels of Canadian breast milk and infant exposure. Environ Pollut 1994; 84 (3): 261–268.PubMedCrossRefGoogle Scholar
  248. 247.
    Loganathan BG, Tanabe S, Hidaka Y, Kawano M, Hidaka H, Tatsukawa R. Temporal trends of persistent organochlorine residues in human adipose tissue from Japan, 1928–1985. Environ Pollut 1993; 81 (1): 31–39.PubMedCrossRefGoogle Scholar
  249. 248.
    Lundén A, Norén K. Polychlorinated naphthalenes and other organochlorine contaminants in Swedish human milk 1972–1992. Arch Environ Contam Toxicol 1998; 34 (4): 414–423.PubMedCrossRefGoogle Scholar
  250. 249.
    Jackson WG, Jr., Michalek JE. Temporal changes in TCDD levels in 1419 Air Force Vietnam-era veterans not occupationally exposed to herbicides. J Expo Anal Environ Epidemiol 2001; 11 (1): 50–55.PubMedCrossRefGoogle Scholar
  251. 250.
    Aylward LL, Hays SM. Temporal trends in human TCDD body burden: decreases over three decades and implications for exposure levels. J Expo Anal Environ Epidemiol 2002; 12 (5): 319–328.PubMedCrossRefGoogle Scholar
  252. 251.
    Minh NH, Someya M, Minh TB, et al. Persistent organochlorine residues in human breast milk from Hanoi and Hochiminh City, Vietnam: contamination, accumulation kinetics and risk assessment for infants. Environ Pollut 2004; 129 (3): 431–441.PubMedCrossRefGoogle Scholar
  253. 252.
    Revich B, Aksel E, Ushakova T, et al. Dioxin exposure and public health in Chapaevsk, Russia. Chemosphere 2001; 43 (4–7): 951–966.PubMedCrossRefGoogle Scholar
  254. 253.
    van Larebeke N, Hens L, Schepens P, et al. The Belgian PCB and dioxin incident of January–June 1999: exposure data and potential impact on health. Environ Health Perspect 2001; 109 (3): 265–273.PubMedCrossRefGoogle Scholar
  255. 254.
    Fürst P, Fürst C, Wilmers K. Human milk as a bioindicator for body burden of PCDDs, PCDFs, organochlorine pesticides and PCBs. Environ Health Perspect 1994; 102 Suppl 1: 187–193.PubMedGoogle Scholar
  256. 255.
    van Leeuwen FX, Malisch R. Results of the third round of the WHO-coordinated exposure study on the levels of PCBs, PCDDs and PCDFs in human milk. Organohalogen Compd 2002; 56: 311–316.Google Scholar
  257. 256.
    Karmaus W, DeKoning EP, Kruse H, Witten J, Osius N. Early childhood determinants of organochlorine concentrations in school-aged children. Pediatr Res 2001; 50 (3): 331–336.PubMedCrossRefGoogle Scholar
  258. 257.
    Walkowiak J, Wiener JA, Fastabend A, et al. Environmental exposure to polychlorinated biphenyls and quality of the home environment: effects on psychodevelopment in early childhood. Lancet 2001; 358 (9293): 1602–1607.PubMedCrossRefGoogle Scholar
  259. 258.
    Lanting CI, Fidler V, Huisman M, Boersma ER. Determinants of polychlorinated biphenyl levels in plasma from 42-month-old children. Arch Environ Contam Toxicol 1998; 35 (1): 135–139.PubMedCrossRefGoogle Scholar
  260. 259.
    Ayotte P, Muckle G, Jacobson JL, Jacobson SW, Dewailly É. Assessment of pre- and postnatal exposure to polychlorinated biphenyls: lessons from the Inuit Cohort Study. Environ Health Perspect 2003; 111 (9): 1253–1258.PubMedCrossRefGoogle Scholar
  261. 260.
    CDC (Centers for Disease Control and Prevention), Department of Health and Human Services. Second National Report on Human Exposure to Environmental Chemicals. Atlanta, GA: National Center for Environmental Health, Division of Laboratory Sciences; 2003.Google Scholar
  262. 261.
    Pereg D, Dewailly É, Poirier GG, Ayotte P. Environmental exposure to polychlorinated biphenyls and placental CYP1A1 activity in Inuit women from northern Québec. Environ Health Perspect 2002; 110 (6): 607–612.PubMedCrossRefGoogle Scholar
  263. 262.
    Jacobson JL, Fein GG, Jacobson SW, Schwartz PM, Dowler JK. The transfer of polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs) across the human placenta and into maternal milk. Am J Public Health 1984; 74 (4): 378, 379.PubMedGoogle Scholar
  264. 263.
    Koopman-Esseboom C, Weisglas-Kuperus N, de Ridder MA, Van der Paauw CG, Tuinstra LG, Sauer PJ. Effects of polychlorinated biphenyl/dioxin exposure and feeding type on infants' mental and psychomotor development. Pediatrics 1996; 97 (5): 700–706.PubMedGoogle Scholar
  265. 264.
    Lackmann GM, Angerer J, Salzberger U, Töllner U. Influence of maternal age and duration of pregnancy on serum concentrations of polychlorinated biphenyls and hexachlorobenzene in full-term neonates. Biol Neonate 1999; 76 (4): 214–219.PubMedCrossRefGoogle Scholar
  266. 265.
    Foster W, Chan S, Platt L, Hughes C. Detection of endocrine disrupting chemicals in samples of second trimester human amniotic fluid. J Clin Endocrinol Metab 2000; 85 (8): 2954–2957.PubMedCrossRefGoogle Scholar
  267. 266.
    Dahl P, Lindström G, Wiberg K, Rappe C. Absorption of polychlorinated biphenyls, dibenzo-p-dioxins and dibenzofurans by breast-fed infants. Chemosphere 1995; 30 (12): 2297–2306.PubMedCrossRefGoogle Scholar
  268. 267.
    Abraham K, Hille A, Ende M, Helge H. Intake and fecal excretion of PCDDs, PCDFs, HCB and PCBs (138, 153, 180) in a breast-fed and a formula-fed infant. Chemosphere 1994; 29 (9–11): 2279–2286.PubMedCrossRefGoogle Scholar
  269. 268.
    Abraham K, Knoll A, Ende M, Päpke O, Helge H. Intake, fecal excretion, and body burden of polychlorinated dibenzo-p-dioxins and dibenzofurans in breast-fed and formula-fed infants. Pediatr Res 1996; 40 (5): 671–679.PubMedCrossRefGoogle Scholar
  270. 269.
    Garner CE, Matthews HB. The effect of chlorine substitution on the dermal absorption of polychlorinated biphenyls. Toxicol Appl Pharmacol 1998; 149 (2): 150–158.PubMedCrossRefGoogle Scholar
  271. 270.
    Mayes BA, Brown GL, Mondello FJ, Holtzclaw KW, Hamilton SB, Ramsey AA. Dermal absorption in rhesus monkeys of polychlorinated biphenyls from soil contaminated with Aroclor 1260. Regul Toxicol Pharmacol 2002; 35 (3): 289–295.PubMedCrossRefGoogle Scholar
  272. 271.
    Qiao GL, Riviere JE. Enhanced systemic tissue distribution after dermal versus intravenous 3,3′,4,4′-tetrachlorobiphenyl exposure: limited utility of radiolabel blood area under the curve and excretion data in dermal absorption calculations and tissue exposure assessment. Toxicol Appl Pharmacol 2001; 177 (1): 26–37.PubMedCrossRefGoogle Scholar
  273. 272.
    Matthews HB, Anderson MW. The distribution and excretion of 2,4,5,2′,5′-pentachlorobiphenyl in the rat. Drug Metab Dispos 1975; 3 (3): 211–219.PubMedGoogle Scholar
  274. 273.
    Leung HW, Paustenbach DJ, Murray FJ, Andersen ME. A physiological pharmacokinetic description of the tissue distribution and enzyme-inducing properties of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the rat. Toxicol Appl Pharmacol 1990; 103 (3): 399–410.PubMedCrossRefGoogle Scholar
  275. 274.
    Carrier G, Brunet RC, Brodeur J. Modeling of the toxicokinetics of polychlorinated dibenzo-p-dioxins and dibenzofurans in mammalians, including humans. I. Nonlinear distribution of PCDD/PCDF body burden between liver and adipose tissues. Toxicol Appl Pharmacol 1995; 131 (2): 253–266.PubMedCrossRefGoogle Scholar
  276. 275.
    Bergman A, Klasson-Wehler E, Kuroki H. Selective retention of hydroxylated PCB metabolites in blood. Environ Health Perspect 1994; 102 (5): 464–469.PubMedCrossRefGoogle Scholar
  277. 276.
    Brouwer A, Longnecker MP, Birnbaum LS, et al. Characterization of potential endocrine-related health effects at low-dose levels of exposure to PCBs. Environ Health Perspect 1999; 107 (Suppl 4): 639–649.PubMedCrossRefGoogle Scholar
  278. 277.
    Hovander L, Malmberg T, Athanasiadou M, et al. Identification of hydroxylated PCB metabolites and other phenolic halogenated pollutants in human blood plasma. Arch Environ Contam Toxicol 2002; 42 (1): 105–117.PubMedCrossRefGoogle Scholar
  279. 278.
    Fängström B, Athanasiadou M, Grandjean P, Weihe P, Bergman A. Hydroxylated PCB metabolites and PCBs in serum from pregnant Faroese women. Environ Health Perspect 2002; 110 (9): 895–899.PubMedCrossRefGoogle Scholar
  280. 279.
    Sandau CD, Ayotte P, Dewailly É, Duffe J, Norstrom RJ. Rentachlorophenol and hydroxylated polychlorinated biphenyl metabolites in umbilical cord plasma of neonates from coastal populations in Quebec. Environ Health Perspect 2002; 110 (4): 411–417.PubMedCrossRefGoogle Scholar
  281. 280.
    Sandau CD, Ayotte P, Dewailly E, Duffe J, Norstrom RJ. Analysis of hydroxylated metabolites of PCBs (OH-PCBs) and other chlorinated phenolic compounds in whole blood from Canadian Inuit. Environ Health Perspect 2000; 108 (7): 611–616.PubMedCrossRefGoogle Scholar
  282. 281.
    Phillips DL, Smith AB, Burse VW, Steele GK, Needham LL, Hannon WH. Half-life of polychlorinated biphenyls in occupationally exposed workers. Arch Environ Health 1989; 44 (6): 351–354.PubMedCrossRefGoogle Scholar
  283. 282.
    Flesch-Janys D, Becher H, Gurn P, et al. Elimination of polychlorinated dibenzo-p-dioxins and dibenzofurans in occupationally exposed persons. J Toxicol Environ Health 1996; 47 (4): 363–378.PubMedCrossRefGoogle Scholar
  284. 283.
    Michalek JE, Tripathi RC. Pharmacokinetics of TCDD in veterans of Operation Ranch Hand: 15-year follow-up. J Toxicol Environ Health A 1999; 57 (6): 369–378.PubMedCrossRefGoogle Scholar
  285. 284.
    Longnecker MP, Rogan WJ, Lucier G. The human health effects of DDT (dichlorodiphenyltrichloroethane) and PCBS (polychlorinated biphenyls) and an overview of organochlorines in public health. Annu Rev Public Health 1997; 18: 211–244.PubMedCrossRefGoogle Scholar
  286. 285.
    Wolff MS, Zeleniuch-Jacquotte A, Dubin N, Toniolo P. Risk of breast cancer and organochlorine exposure. Cancer Epidemiol Biomarkers Prev 2000; 9 (3): 271–277.PubMedGoogle Scholar
  287. 286.
    van der Molen GW, Kooijman SA, Michalek JE, Slob W. The estimation of elimination rates of persistent compounds: a re-analysis of 2,3,7,8-tetrachlorodibenzo-p-dioxin levels in Vietnam veterans. Chemosphere 1998; 37 (9–12): 1833–1844.PubMedGoogle Scholar
  288. 287.
    Michalek JE, Pirkle JL, Needham LL, et al. Pharmacokinetics of 2,3,7,8-tetrachlorodibenzo-p-dioxin in Seveso adults and veterans of operation Ranch Hand. J Expo Anal Environ Epidemiol 2002; 12 (1): 44–53.PubMedCrossRefGoogle Scholar
  289. 288.
    Masuda Y. Fate of PCDF/PCB congeners and change of clinical symptoms in patients with Yusho PCB poisoning for 30 years. Chemosphere 2001; 43 (4–7): 925–930.PubMedCrossRefGoogle Scholar
  290. 289.
    Carrier G, Brunet RC, Brodeur J. Modeling of the toxicokinetics of polychlorinated dibenzo-p-dioxins and dibenzofurans in mammalians, including humans. II. Kinetics of absorption and disposition of PCDDs/PCDFs. Toxicol Appl Pharmacol 1995; 131 (2): 267–276.PubMedCrossRefGoogle Scholar
  291. 290.
    Minh TB, Watanabe M, Tanabe S, Yamada T, Hata J, Watanabe S. Specific accumulation and elimination kinetics of tris(4-chlorophenyl)methane, tris(4-chlorophenyl)methanol, and other persistent organochlorines in humans from Japan. Environ Health Perspect 2001; 109 (9): 927–935.PubMedCrossRefGoogle Scholar
  292. 291.
    Abraham K, Päpke O, Gross A, et al. Time course of PCDD/PCDF/PCB concentrations in breast-feeding mothers and their infants. Chemosphere 1998; 37 (9–12): 1731–1741.PubMedCrossRefGoogle Scholar
  293. 292.
    Rogan WJ, Gladen BC, McKinney JD, et al. Polychlorinated biphenyls (PCBs) and dichlorodiphenyl dichloroethene (DDE) in human milk: effects of maternal factors and previous lactation. Am J Public Health 1986; 76 (2): 172–177.PubMedGoogle Scholar
  294. 293.
    Hauser R, Chen Z, Pothier L, Ryan L, Altshul L. The relationship between human semen parameters and environmental exposure to polychlorinated biphenyls and p,p′-DDE. Environ Health Perspect 2003; 111 (12): 1505–1511.PubMedCrossRefGoogle Scholar
  295. 294.
    Longnecker MP, Ryan JJ, Gladen BC, Schecter AJ. Correlations among human plasma levels of dioxin-like compounds and polychlorinated biphenyls (PCBs) and implications for epidemiologic studies. Arch Environ Health 2000; 55 (3): 195–200.PubMedGoogle Scholar
  296. 295.
    Gladen BC, Longnecker MP, Schecter AJ. Correlations among polychlorinated biphenyls, dioxins, and furans in humans. Am J Ind Med 1999; 35 (1): 15–20.PubMedCrossRefGoogle Scholar
  297. 296.
    Ayotte P, Dewailly É, Ryan JJ, Bruneau S, Lebel G. PCBs and dioxin-like compounds in plasma of adult Inuit living in Nunavik (Arctic Quebec). Chemosphere 1997; 34 (5–7): 1459–1468.PubMedCrossRefGoogle Scholar
  298. 297.
    Koopman-Esseboom C, Huisman M, Weisglas-Kuperus N, et al. PCB and dioxin levels in plasma and human milk of 418 Dutch women and their infants. Predictive value of PCB congener levels in maternal plasma for fetal and infant's exposure to PCBs and dioxins. Chemosphere 1994; 28: 1721–1732.CrossRefGoogle Scholar
  299. 298.
    Winneke G, Bucholski A, Heinzow B, et al. Developmental neurotoxicity of polychlorinated biphenyls (PCBS): cognitive and psychomotor functions in 7-month old children. Toxicol Lett 1998; 102–103: 423–428.PubMedCrossRefGoogle Scholar
  300. 299.
    Steuerwald U, Weihe P, Jørgensen PJ, et al. Maternal seafood diet, methylmercury exposure, and neonatal neurologic function. J Pediatr 2000; 136 (5): 599–605.PubMedCrossRefGoogle Scholar
  301. 300.
    International Agency for Research on Cancer (IARC) IARC monographs on the Evaluation of Carcinogenic Risks to Humans. Polychlorinated dibenzofurans. World Health Organization, Lyon 1997; vol69/dibfuran.html|url. Last accessed on April 24, 2006.Google Scholar
  302. 301.
    International Agency for Research on Cancer (IARC). IARC monographs on the Evaluation of Carcinogenic Risks to Humans. Polychlorinated dibenzo-para-dioxins, World Health Organization, Lyon 1997; vol69/dioxin.html|url. Last accessed on April 24, 2006.Google Scholar
  303. 302.
    Snedeker SM. Pesticides and breast cancer risk: a review of DDT, DDE and dieldrin. Environ Health Perspect 2001;109 (Suppl 1):35–47.PubMedCrossRefGoogle Scholar
  304. 303.
    Pesatori AC, Zocchetti C, Guercilena S, Consonni D, Turrini D, Bertazzi PA. Dioxin exposure and non-malignant health effects: a mortality study. Occup Environ Med 1998;55(2):126–131.PubMedGoogle Scholar
  305. 304.
    Flesch-Janys D, Berger J, Gurn P, et al. Exposure to polychlorinated dioxins and furans (PCDD/F) and mortality in a cohort of workers from a herbicide-producing plant in Hamburg, Federal Republic of Germany. Am J Epidemiol 1995;142(11):1165–1175.PubMedGoogle Scholar
  306. 305.
    Vena J, Boffetta P, Becher H, et al. Exposure to dioxin and nonneoplastic mortality in the expanded IARC international cohort study of phenoxyhebicide and chlorophenol production workers and sprayers. Environ Health Perspect 1998;106(Suppl 2):645–653.PubMedCrossRefGoogle Scholar
  307. 306.
    Henriksen GL, Ketchum NS, Michalek JE, Swaby JA. Serum dioxin and diabetes mellitus in veterans of Operation Ranch Hand. Epidemiology 1997; 8(3):252–258.PubMedCrossRefGoogle Scholar
  308. 307.
    Longnecker MP, Michalek JE. Serum dioxin level in relation to diabetes mellitus among Air Force veterans with background levels of exposure. Epidemiology 2000;11(1):44–48.PubMedCrossRefGoogle Scholar
  309. 308.
    Michalek JE, Ketchum NS, Tripathi RC. Diabetes mellitus and 2,3,7,8-tetrachlorodibenzo- p-dioxin elimination in veterans of Operation Ranch Hand. J Toxicol Environ Health A 2003;66(3):211–221.PubMedCrossRefGoogle Scholar
  310. 309.
    Bertazzi PA, Consonni D, Bachetti S, et al. Health effects of dioxin exposure: a 20-year mortality study. Am J Epidemiol 2001;153(11):1031–1044.PubMedCrossRefGoogle Scholar
  311. 310.
    Steenland K, Piacitelli L, Deddens J, Fingerhut M, Chang LI. Cancer, heart disease, and diabetes in workers exposed to 2,3,7,8-tetrachlorodibenzo- p-dioxin. J Natl Cancer Inst 1999;91(9):779–786.PubMedCrossRefGoogle Scholar
  312. 311.
    Longnecker MP, Klebanoff MA, Brock JW, Zhou H. Polychlorinated biphenyl serum levels in pregnant subjects with diabetes. Diabetes Care, 2001;24(6): 1099–1101.PubMedCrossRefGoogle Scholar
  313. 312.
    Longnecker MP, Klebanoff MA, Zhou H, Brock JW. Association between maternal serum concentration of the DDT metabolite DDE and preterm and small-for-gestational-age babies at birth. Lancet 2001;358(9276):110–114.PubMedCrossRefGoogle Scholar
  314. 313.
    Weisskopf MG, Anderson HA, Hanrahan LP, et al. Maternal exposure to Great Lakes sport-caught fish and dichlorodiphenyl dichloroethylene, but not polychlorinated biphenyls, is associated with reduced birth weight. Environ Res 2005;97(2):149–162.PubMedCrossRefGoogle Scholar
  315. 314.
    Rogan WJ, Gladen BC, McKinney JD, et al. Neonatal effects of transplacental exposure to PCBs and DDE. J Pediatr 1986;109(2):335–341.PubMedCrossRefGoogle Scholar
  316. 315.
    Berkowitz GS, Lapinski RH, Wolff MS. The role of DDE and polychlorinated biphenyl levels in preterm birth. Arch Environ Contam Toxicol 1996;30(1):139–141.PubMedCrossRefGoogle Scholar
  317. 316.
    Rogan WJ. PCBs and cola-colored babies: Japan, 1968, and Taiwan, 1979. Teratology 1982;26:259–261.PubMedCrossRefGoogle Scholar
  318. 317.
    Rogan WJ, Gladen BC, Hung KL, et al. Congenital poisoning by polychlorinated biphenyls and their contaminants in Taiwan. Science 1988;241(4863): 334–336.PubMedCrossRefGoogle Scholar
  319. 318.
    Patandin S, Koopman-Esseboom C, de Redder MA, Weisglas-Kuperus N, Sauer PJ. Effects of environmental exposure to polychlorinated biphenyls and dioxins on birth size and growth in Dutch children. Pediatr Res 1998;44(4):538–545.PubMedCrossRefGoogle Scholar
  320. 319.
    Grandjean P, Bjerve KS, Weihe P, Steuerwald U. Birthweight in a fishing community: significance of essential fatty acids and marine food contaminants. Int J Epidemiol 2001;30(6):1272–1278.PubMedCrossRefGoogle Scholar
  321. 320.
    Gladen BC, Shkiryak-Nyzhnyk ZA, Chyslovska N, Zadorozhnaja TD, Little RE. Persistent organochlorine compounds and birth weight. Ann Epidemiol 2003;13(3):151–157.PubMedCrossRefGoogle Scholar
  322. 321.
    Vartiainen T, Jaakkola JJ, Saarikoski S, Tuomisto J. Birth weight and sex of children and the correlation to the body burden of PCDDs/PCDFs and PCBs of the mother. Environ Health Perspect 1998;106(2):61–66.PubMedCrossRefGoogle Scholar
  323. 322.
    Eskenazi B, Mocarelli P, Warner M, et al. Maternal serum dioxin levels and birth outcomes in women of Seveso, Italy. Environ Health Perspect 2003; 111(7):947–953.PubMedCrossRefGoogle Scholar
  324. 323.
    Mocarelli P, Brambilla P, Gerthoux PM, Patterson DG, Jr., Needham LL. Change in sex ratio with exposure to dioxin. Lancet 1996;348(9024):409.PubMedCrossRefGoogle Scholar
  325. 324.
    Mocarelli P, Gerthoux PM, Ferrari E, et al. Paternal concentrations of dioxin and sex ratio of offspring. Lancet 2000:355(9218):1858–1863.PubMedCrossRefGoogle Scholar
  326. 325.
    Ryan JJ, Amirova Z, Carrier G. Sex ratios of children of Russian pesticide producers exposed to dioxin. Environ Health Perspect 2002;110(11): A699-A701.PubMedCrossRefGoogle Scholar
  327. 326.
    Yoshimura T, Kaneko S, Hayabuchi H. Sex ratio in offspring of those affected by dioxin and dioxin-like compounds: the Yusho, Seveso, and Yucheng incidents. Occup Environ Med 2001;58(8):540,541.PubMedCrossRefGoogle Scholar
  328. 327.
    Rogan WJ, Gladen BC, Guo YL, Hsu CC. Sex ratio after exposure to dioxin-like chemicals in Taiwan. Lancet 1999;353(9148):206,207.PubMedCrossRefGoogle Scholar
  329. 328.
    Michalek JE, Rahe AJ, Boyle CA. Paternal dioxin and the sex of children fathered by veterans of Operation Ranch Hand. Epidemiology 1998;9(4):474,475.PubMedCrossRefGoogle Scholar
  330. 329.
    Chen YC, Guo YL, Hsu CC, Rogan WJ. Cognitive development of Yu-Cheng (‘Oil Disease’) children prenatally exposed to heat-degraded PCBs. Jama 1992;268(22):3213–3218.PubMedCrossRefGoogle Scholar
  331. 330.
    Longnecker MP, Wolff MS, Gladen BC, et al. Comparison of polychlorinated biphenyl levels across studies of human neuro development. Environ Health Perspect 2003;111(1):65–70.PubMedCrossRefGoogle Scholar
  332. 331.
    Jacobson JL, Jacobson SW. Intellectual impairment in children exposed to polychlorinated biphenyls in utero. N Engl J Med 1996;335(11):783–789.PubMedCrossRefGoogle Scholar
  333. 332.
    Patandin S, Lanting CI, Mulder PG, Boersma ER, Sauer PJ, Weisglas-Kuperus N. Effects of environmental exposure to polychlorinated biphenyls and dioxins on cognitive abilities in Dutch children at 42 months of age. J Pediatr 1999;134(1):33–41.PubMedCrossRefGoogle Scholar
  334. 333.
    Jacobson SW, Fein GG, Jacobson JL, Schwartz PM, Dowler JK. The effect of intrauterine PCB exposure on visual recognition memory. Child Dev 1985; 56(4):853–860.PubMedCrossRefGoogle Scholar
  335. 334.
    Darvill T, Lonky E, Reihman J, Stewart P, Pagano J. Prenatal exposure to PCBs and infant performance on the Fagan test of infant intelligence. Neurotoxicology 2000;21(6):1029–1038.PubMedGoogle Scholar
  336. 335.
    Rogan WJ, Gladen BC. PCBs, DDE, and child development at 18 and 24 months. Ann Epidemiol 1991; 1(5):407–413.PubMedCrossRefGoogle Scholar
  337. 336.
    Jacobson JL, Jacobson SW, Schwartz PM, Fein GG, Dowler JK. Prenatal exposure to an environmental toxin: A test of the multiple effects model. Dev Psych 1984;20:523–532.CrossRefGoogle Scholar
  338. 337.
    Jacobson JL, Jacobson SW, Humphrey HE. Effects of exposure to PCBs and related compounds on growth and activity in children. Neurotoxicol Teratol 1990;14(4):319–326.CrossRefGoogle Scholar
  339. 338.
    Jacobson JL, Jacobson SW, Humphrey HE. Effects of in utero exposure to polychlorinated biphenyls and related contaminants on cognitive functioning in young children. J Pediatr 1990;116(1):38–45.PubMedCrossRefGoogle Scholar
  340. 339.
    Lonky E, Reihman J, Darvill T, Mather JS, Daly H. Neonatal Behavioral Assessment Scale performance in humans influenced by maternal consumption of environmentally contaminated Lake Ontario fish. J Great Lakes Res 1996;22(2):198–212.Google Scholar
  341. 340.
    Stewart P, Reihman J, Lonky E, Darvill T, Pagano J. Prenatal PCB exposure and neonatal behavioral assessment scale (NBAS) performance. Neurotoxicol Teratol 2000;22(1):21–29.PubMedCrossRefGoogle Scholar
  342. 341.
    Stewart PW, Reihman J, Lonky EI, Darvill TJ, Pagano J. Cognitive development in preschool children prenatally exposed to PCBs and MeHg. Neurotoxicol Teratol 2003;25(1):11–22.PubMedCrossRefGoogle Scholar
  343. 342.
    Gladen BC, Rogan WJ. Effects of perinatal polychlorinated biphenyls and dichlorodiphenyl dichloroethene on later development. J Pediatr 1991;119(1 (Pt 1)):58–63.PubMedCrossRefGoogle Scholar
  344. 343.
    Vreugdenhil HJ, Lanting CI, Mulder PG, Boersma ER, Weisglas-Kuperus N. Effects of prenatal PCB and dioxin background exposure on cognitive and motor abilities in Dutch children at school age. J Pediatr 2002;140(1):48–56.PubMedCrossRefGoogle Scholar
  345. 344.
    Huisman M, Koopman-Esseboom C, Fidler V, et al. Perinatal exposure to polychlorinated biphenyls and dioxins and its effect on neonatal neurological development. Early Hum Dev 1995;41(2):111–127.PubMedCrossRefGoogle Scholar
  346. 345.
    Huisman M, Koopman-Esseboom C, Lanting CI et al. Neurological condition in 18-month-old children perinatally exposed to polychlorinated biphenyls and dioxins. Early Hum Dev 1995;43(2):165–176.PubMedCrossRefGoogle Scholar
  347. 346.
    Lanting CI, Patandin S, Fidler V, et al. Neurological condition in 42-month-old children in relation to pre- and postnatal exposure to polychlorinated biphenyls and dioxins. Early Hum Dev 1998;50(3): 283–292.PubMedCrossRefGoogle Scholar
  348. 347.
    Koopman-Esseboom C, Huisman M, Touwen BC, et al. Newborn infants diagnosed as neurologically abnormal with relation to PCB and dioxin exposure and their thyroid-hormone status. Dev Med Child Neurol 1997;39(11):785.PubMedGoogle Scholar
  349. 348.
    Pluim HJ, van der Goot M, Olie K, van der Slikke JW, Koppe JG. Missing effects of background dioxin exposure on development of breast-fed infants during the first half year of life. Chemosphere 1996; 33(7):1307–1315.PubMedCrossRefGoogle Scholar
  350. 349.
    Ilsen A, Briët JM, Koppe JG, Pluim HJ, Oosting J. Signs of enhanced neuromotor maturation in children due to perinatal load with background levels of dioxins. Follow-up until age 2 years and 7 months. Chemosphere 1996;33(7):1317–1326.PubMedCrossRefGoogle Scholar
  351. 350.
    Pluim HJ, de Vijlder JJ, Olie K, et al. Effects of pre- and postnatal exposure to chlorinated dioxins and furans on human neonatal thyroid hormone concentrations. Environ Health Perspect 1993;101(6): 504–508.PubMedCrossRefGoogle Scholar
  352. 351.
    Pluim HJ, Koppe JG, Olie K, et al. Effects of dioxins on thyroid function in newborn babies. Lancet 1992;339(8804):1303.PubMedCrossRefGoogle Scholar
  353. 352.
    Grandjean P, Weihe P, Burse VW, et al. Neurobehavioral deficits associated with PCB in 7-year-old children prenatally exposed to seafood neurotoxicants. Neurotoxicol Teratol 2001;23(4):305–317.PubMedCrossRefGoogle Scholar
  354. 353.
    Longnecker MP, Gladen BC, Patterson DG, Jr., Rogan WJ. Polychlorinated biphenyl (PCB) exposure in relation to thyroid hormone levels in neonates. Epidemiology 2000;11(3):249–254.PubMedCrossRefGoogle Scholar
  355. 354.
    Koopman-Esseboom C, Morse DC, Weisglas-Kuperus N, et al. Effects of dioxins and polychlorinated biphenyls on thyroid hormone status of pregnant women and theirinfants. Pediatr Res 1994;36(4):468–473.PubMedCrossRefGoogle Scholar
  356. 355.
    Murai K, Okamura K, Tsuji H, et al. Thyroid function in “yusho” patients exposed to polychlorinated biphenyls (PCB). Environ Res 1987;44(2):179–187.PubMedCrossRefGoogle Scholar
  357. 356.
    Spengler JD, Koutrakis P, Dockery DW, Raizenne M, Speizer FE. Health effects of acid aerosols on North American children: air pollution exposures. Environ Health Perspect 1996;104(5):492–499.PubMedCrossRefGoogle Scholar
  358. 357.
    Abt E, Suh HH, Allen G, Koutrakis P. Characterization of indoor particle sources: A study conducted in the metropolitan Boston area. Environ Health Perspect 2000;108(1):35–44.PubMedCrossRefGoogle Scholar
  359. 358.
    Sørensen M, Loft S, Andersen HV, et al. Personal exposure to PM2.5, black smoke and NO2 in Copenhagen: relationship to bedroom and outdoor concentrations covering seasonal variation. J Expo Anal Environ Epidemiol 2005;15:1–10.CrossRefGoogle Scholar
  360. 359.
    Katsouyanni K, Touloumi G, Samoli E, et al. Confounding and effect modification in the short-term effects of ambient particles on total mortality: results from 29 European cities within the APHEA2project. Epidemiology 2001;12(5):521–531.PubMedCrossRefGoogle Scholar
  361. 360.
    Sydbom A, Blomberg A, Parnia S, Stenfors N, Sandström T, Dahlén SE. Health effects of diesel exhaust emissions. Eur Respir J 2001;17(4):733–746.PubMedCrossRefGoogle Scholar
  362. 361.
    Koutrakis P, Briggs SLK, Leaderer BP. Source apportionment of indoor aerosols in Suffolk and Onondaga counties, New York. Environ Sci Technol 1992; 26:521–527.CrossRefGoogle Scholar
  363. 362.
    Götschi T, Oglesby L, Mathys P, et al. Comparison of black smoke and PM2.5 levels in indoor and outdoor environments of four European cities. Environ Sci Technol 2002;36(6):1191–1197.PubMedCrossRefGoogle Scholar
  364. 363.
    Allen R, Larson T, Sheppard L, Wallace L, Liu L-JS. Use of real-time light scattering data to estimate the contribution of infiltrated and indoor-generated particles to indoor air. Environ Sci Technol 2003;37(16):3484–3492.PubMedCrossRefGoogle Scholar
  365. 364.
    Cyrys J, Pitz M, Bischof W, Wichmann HE, Heinrich J. Relationship between indoor and outdoor levels of fine particle mass, particle number concentrations and black smoke under different ventilation conditions. J Expo Anal Environ Epidemiol 2004; 14:275–283.PubMedCrossRefGoogle Scholar
  366. 365.
    Meng QY, Turpin BJ, Korn L, et al. Influence of ambient (outdoor) sources on residential indoor and personal PM2.5 concentrations: analyses of RIOPA data. J Expo Anal Environ Epidemiol 2005; 15(1):17–28.PubMedCrossRefGoogle Scholar
  367. 366.
    Özkaynak H, Xue J, Spengler J, Wallace L, Pellizzari E, Jenkins P. Personal exposure to airborne particles and metals: results from the Particle TEAM study in Riverside, California. J Expo Anal Environ Epidemiol 1996;6(1):57–78.PubMedGoogle Scholar
  368. 367.
    Thatcher TL, Layton DW. Deposition, resuspension, and penetration of particles within a residence. Atmospher Environ 1995;29(13):1487–1497.CrossRefGoogle Scholar
  369. 368.
    Long CM, Suh HH, Catalano PJ, Koutrakis P. Using time- and size-resolved particulate data to quantify indoor penetration and deposition behavior. Environ Sci Technol 2001;35(10):2089–2099.PubMedCrossRefGoogle Scholar
  370. 369.
    Pellizzari ED, Clayton CA, Rodes CE, et al. Particulate matter and manganese exposures in Toronto, Canada. Atmospher Environ 1999;33:721–734.CrossRefGoogle Scholar
  371. 370.
    Brauer M, Hirtle R, Lang B, Ott W. Assessment of indoor fine aerosol contributions from environmental tobacco smoke and cooking with a portable nephelometer. J Expo Anal Environ Epidemiol 2000;10(2):136–144.PubMedCrossRefGoogle Scholar
  372. 371.
    Koistinen KJ, Hänninen O, Rotko T, Edwards RD, Moschandreas D, Jantunen MJ. Behaviroal and environmental determinants of personal exposures to PM2.5 in EXPOLIS—Helsinki, Finland. Atmospher Environ 2001;35:2473–2481.CrossRefGoogle Scholar
  373. 372.
    Keeler GJ, Dvonch T, Yip FY, et al. Assessment of personal and community-level exposures to particulate matter among children with asthma in Detroit, Michigan, as part of Community Action Against Asthma (CAAA). Environ Health Perspect 2002;110 (Suppl 2):173–181.PubMedGoogle Scholar
  374. 373.
    Lai HK, Kendall M, Ferrier H, et al. Personal exposures and microenvironment concentrations of PM2.5, VOC, NO2 and CO in Oxford, UK. Atmospher Environ 2004;38:6399–6410.CrossRefGoogle Scholar
  375. 374.
    Kamens R, Lee C-T, Wiener R, Leith D. A study to characterize indoor particles in three non-smoking homes. Atmospher Environ A 1991;25A(5/6):939–948.CrossRefGoogle Scholar
  376. 375.
    Long CM, Suh HH, Koutrakis P. Characterization of indoor particle sources using continuous mass and size monitors. J Air Waste Manag Assoc 2000; 50(7):1236–1250.PubMedGoogle Scholar
  377. 376.
    Brauer M, Hirtle RD, Hall AC, Yip TR. Monitoring personal fine particle exposure with a particle counter. J Expo Anal Environ Epidemiol 1999; 9:228–236.PubMedCrossRefGoogle Scholar
  378. 377.
    Howard-Reed C, Rea AW, Zufall MJ, et al. Use of a continuous nephelometer to measure personal exposure to particles during the U.S. Environmental Protection Agency Baltimore and Fresno Panel studies. J Air Waste Manag Assoc 2000;50(7):1125–1132.PubMedGoogle Scholar
  379. 378.
    Rea AW, Zufall MJ, Williams RW, Sheldon L, Howard-Reed C. The influence of human activity patterns on personal PM exposure: a comparative analysis of filter-based and continuous particle measurements. J Air Waste Manag Assoc 2001; 51(9):1271–1279.PubMedGoogle Scholar
  380. 379.
    Levy JI, Houseman EA, Ryan L, Richardson D, Students from the 1998 Summer Program in Biostatistics, Spengler JD. Particle concentrations in urban microenvironments. Environ Health Perspect 2000; 108(11):1051–1057.PubMedCrossRefGoogle Scholar
  381. 380.
    Janssen NA, Hoek G, Brunekreef B, Harssema H, Mensink I, Zuidhof A. Personal sampling of particles in adults: relation among personal, indoor, and outdoor air concentrations. Am J Epidemiol 1998;147(6):537–547.PubMedGoogle Scholar
  382. 381.
    Rojas-Bracho L, Suh HH, Catalano PJ, Koutrakis P. Personal exposures to particles and their relationships with personal activities for chronic obstruc-tive pulmonary disease patients living in Boston. J Air Waste Manag Assoc 2004;54(2):207–217.PubMedGoogle Scholar
  383. 382.
    Clayton CA, Perritt RL, Pellizzari ED, et al., Particle Total Exposure Assessment Methodology (PTEAM) study: distributions of aerosol and elemental concentrations in personal, indoor, and outdoor air samples in a southern California community. J Expo Anal Environ Epidemiol 1993;3(2):227–250.PubMedGoogle Scholar
  384. 383.
    Liu LJ, Box M, Kalman D, et al. Exposure assessment of particulate matter for susceptible populations in Seattle. Environ Health Perspect 2003; 111(7):909–918.PubMedCrossRefGoogle Scholar
  385. 384.
    Ebelt ST, Petkau AJ, Vedal S, Fisher TV, Brauer M. Exposure of chronic obstructive pulmonary disease patients to particulate matter: relationships between personal and ambient air concentrations. J Air Waste Manag Assoc 2000;50(7):1081–1094.PubMedGoogle Scholar
  386. 385.
    Rojas-Bracho L, Suh HH, Koutrakis P. Relationships among personal, indoor, and outdoor fine and coarse particle concentrations for individuals with COPD. J Expo Anal Environ Epidemiol 2000; 10(3):294–306.PubMedCrossRefGoogle Scholar
  387. 386.
    Janssen NA, Hoek G, Harssema H, Brunekreef B. Childhood exposure to PM10: relation between personal, classroom, and out door concentrations. Occup Environ Med 1997;54(12):888–894.PubMedGoogle Scholar
  388. 387.
    Janssen NA, de Hartog JJ, Hoek G, et al. Personal exposure to fine particulate matter in elderly subjects: relation between personal, indoor, and outdoor concentrations. J Air Waste Manag Assoc 2000;50(7):1133–1143.PubMedGoogle Scholar
  389. 388.
    Rojas-Bracho L, Suh HH, Oyola P, Koutrakis P. Measurements of children's exposures to particles and nitrogen dioxide in Santiago, Chile. Sci Total Environ 2002;287(3):249–264.PubMedCrossRefGoogle Scholar
  390. 389.
    Chalupa DC, Morrow PE, Oberdörster G, Utell MJ, Frampton MW. Ultrafine particle deposition in subjects with asthma. Environ Health Perspect 2004;112(8):879–882.PubMedCrossRefGoogle Scholar
  391. 390.
    Daigle CC, Chalupa DC, Gibb FR, et al. Ultrafine particle deposition in humans during rest and exercise. Inhal Toxicol 2003;15(6):539–552.PubMedCrossRefGoogle Scholar
  392. 391.
    Kim CS, Jaques PA. Total lung deposition of ultrafine particles in elderly subjects during controlled breathing. Inhal Toxicol 2005;17(7–8):387–399.PubMedGoogle Scholar
  393. 392.
    Wilson FJ, Jr., Hiller FC, Wilson JD, Bone RC. Quantitative deposition of ultrafine stable particles in the human respiratory tract. J Appl Physiol 1985;58(1):223–229.PubMedCrossRefGoogle Scholar
  394. 393.
    Kim CS, Hu SC, DeWitt P, Gerrity TR. Assessment of regional deposition of inhaled particles in human lungs by serial bolus delivery method. J Appl Physiol 1996;81(5):2203–2213.PubMedGoogle Scholar
  395. 394.
    Kim CS, Jaques PA. Respiratory dose of inhaled ultrafine particles in healthy adults. Phil Trans R Soc Lond A 2000;358:2693–2705.CrossRefGoogle Scholar
  396. 395.
    Pinkerton KE, Green FH, Saiki C, et al. Distribution of particulate matter and tissue remodeling in the human lung. Environ Health Perspect 2000; 108(11):1063–1069.PubMedCrossRefGoogle Scholar
  397. 396.
    Nemmar A, Hoet PH, Vanquickenborne B, et al. Passage of inhaled particles into the blood circulation in humans. Circulation 2002;105(4):411–414.PubMedCrossRefGoogle Scholar
  398. 397.
    Kim CS, Lewars GA, Sackner MA. Measurement of total lung aerosol deposition as an index of lung abnormality. J Appl Physiol 1988;64(4):1527–1536.PubMedGoogle Scholar
  399. 398.
    Kim CS, Jaques PA. Analysis of total respiratory deposition of inhaled ultrafine particles in adult subjects at various breathing patterns. Aerosol Sci Technol 2004;38:525–540.CrossRefGoogle Scholar
  400. 399.
    Kim CS, Kang TC. Comparative measurement of lung deposition of inhaled fine particles in normal subjects and patients with obstructive airway disease. Am J Respir Crit Care Med 1997;155(3):899–905.PubMedGoogle Scholar
  401. 400.
    Brown JS, Zeman KL, Bennett WD. Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am J Respir Crit Care Med 2002; 166(9):1240–1247.PubMedCrossRefGoogle Scholar
  402. 401.
    Churg A, Brauer M. Human lung parenchyma retains PM 2.5. Am J Respir Crit Care Med 1997; 155(6):2109–2111.PubMedGoogle Scholar
  403. 402.
    Brauer M, Avila-Casado C, Fortoul TI, Vedal S, Stevens B, Churg A. Air pollution and retained particles in the lung. Environ Health Perspect 2001;109(10):1039–1043.PubMedCrossRefGoogle Scholar
  404. 403.
    Churg A, Brauer M, del Carmen Avila-Casado M, Fortoul TI, Wright JL. Chronic exposure to high levels of particulate air pollution and small airway remodeling. Environ Health Perspect 2003;111(5):714–718.PubMedCrossRefGoogle Scholar
  405. 404.
    Souza MB, Saldiva PH, Pope CA, 3rd, Capelozzi VL. Respiratory changes due to long-term exposure to urban levels of air pollution: a histopathologic study in humans. Chest 1998;113(5):1312–1318.PubMedGoogle Scholar
  406. 405.
    Brook RD, Franklin B, Cascio W, et al. Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation 2004;109(21):2655–2671.PubMedCrossRefGoogle Scholar
  407. 406.
    Pope CA, 3rd. Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who's at risk. Environ Health Perspect 2000; 108(Suppl 4):713–723.PubMedCrossRefGoogle Scholar
  408. 407.
    Committee of the Environmental and Occupational Health Assembly of the American Thoracic Society. Health effects of outdoor air pollution. Am J Respir Crit Care Med 1996;153(1):3–50.Google Scholar
  409. 408.
    Clancy L, Goodman P, Sinclair H, Dockery DW. Effect of air-pollution control on death rates in Dublin, Ireland: an intervention study. Lancet 2002;360(9341):1210–1214.PubMedCrossRefGoogle Scholar
  410. 409.
    Dockery DW, Pope CA, 3rd, Xu X, et al. An association between air pollution and mortality in six U.S. cities. N Engl J Med 1993;329(24):1753–1759.PubMedCrossRefGoogle Scholar
  411. 410.
    Pope CA, 3rd, Burnett RT, Thun MJ, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama 2002;287 (9):1132–1141.PubMedCrossRefGoogle Scholar
  412. 411.
    Schwartz J, Dockery DW, Neas LM. Is daily mortality associated specifically with fine particles? J Air Waste Manag Assoc 1996;46(10):927–939.PubMedGoogle Scholar
  413. 412.
    Atkinson RW, Anderson HR, Sunyer J, et al. Acute effects of particulate air pollution on respiratory admissions: results from APHEA 2 project. Air Pollution and Health: a European Approach. Am J Respir Crit Care Med 2001;164(10 Pt 1):1860–1866.PubMedGoogle Scholar
  414. 413.
    Sarnat JA, Schwartz J, Catalano PJ, Suh HH. Gaseous pollutants in particulate matter epidemiology: confounders or surrogates? Environ Health Perspect 2001;109(10):1053–1061.PubMedCrossRefGoogle Scholar
  415. 414.
    Peng RD, Dominici F, Pastor-Barriuso R, Zeger SL, Samet JM. Seasonal analyses of air pollution and mortality in 100 U.S. cities. Johns Hopkins University, Department of Biostatistics Working Papers 2004:Paper 41.Google Scholar
  416. 415.
    Samet JM, Dominici F, Curriero FC, Coursac I, Zeger SL. Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. N Engl J Med 2000;343(24):1742–1749.PubMedCrossRefGoogle Scholar
  417. 416.
    Levy JI, Hammitt JK, Spengler JD. Estimating the mortality impacts of particulate matter: what can be learned from between-study variability? Environ Health Perspect 2000;108(2):109–117.PubMedCrossRefGoogle Scholar
  418. 417.
    Zanobetti A, Schwartz J, Samoli E, et al. The temporal pattern of respiratory and heart disease mortality in response to air pollution. Environ Health Perspect 2003;111(9):1188–1193.PubMedCrossRefGoogle Scholar
  419. 418.
    Pope CA, 3rd, Thun MJ, Namboodiri MM, et al. Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am J Respir Crit Care Med 1995;151(3 Pt 1):669–674.PubMedGoogle Scholar
  420. 419.
    Krewski D, Burnett RT, Goldberg M, et al. Reanalysis of the Harvard Six Cities Study, part I: validation and replication. Inhal Toxicol 2005;17(7–8):335–342.PubMedGoogle Scholar
  421. 420.
    Abbey DE, Nishino N, McDonnell WF, et al. Long-term inhalable particles and other air pollutants related to mortality in nonsmokers. Am J Respir Crit Care Med 1999;159(2):373–382.PubMedGoogle Scholar
  422. 421.
    Aga E, Samoli E, Touloumi G, et al. Short-term effects of ambient particles on mortality in the elderly: results from 28 cities in the APHEA2 project. Eur Respir J Suppl 2003;40:28s-33s.PubMedCrossRefGoogle Scholar
  423. 422.
    Zanobetti A, Schwartz J. Cardiovascular damage by airborne particles: are diabetics more susceptible? Epidemiology 2002;13(5):588–592.PubMedCrossRefGoogle Scholar
  424. 423.
    Goldberg MS, Burnett RT, Bailar JC, 3rd, et al. The association between daily mortality and ambient air particle pollution in Montreal, Quebec 2. Cause-specific mortality. Environ Res 2001;86(1):26–36.PubMedCrossRefGoogle Scholar
  425. 424.
    Zeger SL, Dominici F, Samet J. Harvesting-resistant estimates of air pollution effects on mortality. Epidemiology 1999;10(2):171–175.PubMedCrossRefGoogle Scholar
  426. 425.
    Schwartz J. Harvesting and long term exposure effects in the relation between air pollution and mortality. Am J Epidemiol 2000;151(5):440–448.PubMedGoogle Scholar
  427. 426.
    Cohen AJ, Ross Anderson H, Ostro B, et al. The global burden of disease due to outdoor air pollution. J Toxicol Environ Health A 2005;68(13–14):1301–1307.PubMedCrossRefGoogle Scholar
  428. 427.
    Peters A, Dockery DW, Muller JE, Mittleman MA. Increased particulate air pollution and the triggering of myocardial infarction. Circulation 2001; 103(23):2810–2815.PubMedGoogle Scholar
  429. 428.
    Janssen NA, Schwartz J, Zanobetti A, Suh HH. Air conditioning and source-specific particles as modifiers of the effect of PM10 on hospital admissions for heart and lung disease. Environ Health Perspect 2002;110(1):43–49.PubMedCrossRefGoogle Scholar
  430. 429.
    Atkinson RW, Anderson HR, Strachan DP, Bland JM, Bremner SA, Ponce de Leon A. Short-term associations between outdoor air pollution and visits to accident and emergency departments in London for respiratory complaints. Eur Respir J 1999;13(2):257–265.PubMedCrossRefGoogle Scholar
  431. 430.
    Norris G, YoungPong SN, Koenig JQ, Larson TV, Sheppard L, Stout JW. An association between fine particles and asthma emergency department visits for children in Seattle. Environ Health Perspect 1999;107(6):489–493.PubMedCrossRefGoogle Scholar
  432. 431.
    Sinclair AH, Tolsma D. Associations and lags between air pollution and acute respiratory visits in an ambulatory care setting: 25-month results from the aerosol research and inhalation epidemiological study. J Air Waste Manag Assoc 2004;54(9):1212–1218.PubMedGoogle Scholar
  433. 432.
    Künzli N, Jerrett M, Mack WJ, et al. Ambient air pollution and atherosclerosis in Los Angeles. Environ Health Perspect 2005;113(2):201–206.PubMedGoogle Scholar
  434. 433.
    Horak F, Jr., Studnicka M, Gartner C, et al.. Particulate matter and lung function growth in children: a 3-yr follow-up study in Austrian schoolchildren. Eur Respir J 2002;19(5):838–845.PubMedCrossRefGoogle Scholar
  435. 434.
    Gauderman WJ, McConnell R, Gilliland F, et al. Association between air pollution and lung function growth in southern California children. Am J Respir Crit Care Med 2000;162(4 Pt 1):1383–1390.PubMedGoogle Scholar
  436. 435.
    Gauderman WJ, Gilliland GF, Vora H, et al. Association between air pollution and lung function growth in southern California children: results from a second cohort. Am J Respir Crit Care Med 2002;166(1):76–84.PubMedCrossRefGoogle Scholar
  437. 436.
    Jedrychowski W, Flak E, Mróz E. The adverse effect of low levels of ambient air pollutants on lung function growth in preadolescent children. Environ Health Perspect 1999;107(8):669–674.PubMedCrossRefGoogle Scholar
  438. 437.
    Raizenne M, Neas LM, Damokosh AI, et al. Health effects of acid aerosols on North American children: pulmonary function. Environ Health Perspect 1996; 104(5):506–514.PubMedCrossRefGoogle Scholar
  439. 438.
    Abbey DE, Burchette RJ, Knutsen SF, McDonnell WF, Lebowitz MD, Enright PL. Long-term particulate and other air pollutants and lung function in nonsmokers. Am J Respir Crit Care Med 1998; 158(1):289–298.PubMedGoogle Scholar
  440. 439.
    Ackermann-Liebrich U, Leuenberger P, Schwartz J, et al. Lung function and long term exposure to air pollutants in Switzerland. Am J Respir Crit Care Med 1997;155:122–129.PubMedGoogle Scholar
  441. 440.
    Abbey DE, Ostro BE, Petersen F, Burchette RJ. Chronic respiratory symptoms associated with estimated long-term ambient concentrations of fine particulates less than 2.5 microns in aerodynamic diameter (PM2.5) and other air pollutants. J Expo Anal Environ Epidemiol 1995;5(2):137–159.PubMedGoogle Scholar
  442. 441.
    Zemp E, Elsasser S, Schindler C, et al. Long-term ambient air pollution and respiratory symptoms in adults (SAPALDIA study). Am J Respir Crit Care Med 1999;159:1257–1266.PubMedGoogle Scholar
  443. 442.
    Neas LM, Dockery DW, Koutrakis P, Speizer FE. Fine particles and peak flow in children: acidity versus mass. Epidemiology 1999;10(5):550–553.PubMedCrossRefGoogle Scholar
  444. 443.
    Schwartz J, Neas L. Fine particles are more strongly associated than coarse particles with acute respiratory health effects in schoolchildren. Epidemiology 2000;11(1):6–10.PubMedCrossRefGoogle Scholar
  445. 444.
    Fischer PH, Steerenberg PA, Snelder JD, van Loveren H, van Amsterdam JG. Association between exhaled nitric oxide, ambient air pollution and respiratory health in school children. Int Arch Occup Environ Health 2002;75(5):348–353.PubMedCrossRefGoogle Scholar
  446. 445.
    Timonen KL, Pekkanen J. Air pollution and respiratory health among children with asthmatic or cough symptoms. Am J Respir Crit Care Med 1997;156(2 Pt 1):546–552.PubMedGoogle Scholar
  447. 446.
    Koenig JQ, Larson TV, Hanley QS, et al. Pulmonary function changes in children associated with fine particulate matter. Environ Res 1993;63(1):26–38.PubMedCrossRefGoogle Scholar
  448. 447.
    Boezen M, Schouten J, Rijcken B, et al. Peak expiratory flow variability, bronchial responsiveness, and susceptibility to ambient air pollution in adults. Am J Respir Crit Care Med 1998;158(6):1848–1854.PubMedGoogle Scholar
  449. 448.
    van der Zee SC, Hoek G, Boezen MH, Schouten JP, van Wijnen JH, Brunekreef B. Acute effects of air pollution on respiratory health of 50–70 yr old adults. Eur Respir J 2000;15(4):700–709.PubMedCrossRefGoogle Scholar
  450. 449.
    Delfino RJ, Gong H, Jr., Linn WS, Pellizzari ED, Hu Y. Asthma symptoms in Hispanic children and daily ambient exposures to toxic and criteria air pollutants. Environ Health Perspect 2003;111(4): 647–656.PubMedCrossRefGoogle Scholar
  451. 450.
    Lewis TC, Robins TG, Dvonch JT, et al. Air pollution-associated changes in lung function among asthmatic children in Detroit. Environ Health Perspect 2005;113(8):1068–1075.PubMedCrossRefGoogle Scholar
  452. 451.
    Pekkanen J, Timonen KL, Ruuskanen J, Reponen A, Mirme A. Effects of ultrafine and fine particles in urban air on peak expiratory flow among children with asthmatic symptoms. Environ Res 1997;74(1):24–33.PubMedCrossRefGoogle Scholar
  453. 452.
    Steerenberg PA, Nierkens S, Fischer PH, et al. Traffic-related air pollution affects peak expiratory flow, exhaled nitric oxide, and inflammatory nasal markers. Arch Environ Health 2001;56(2):167–174.PubMedCrossRefGoogle Scholar
  454. 453.
    Gielen MH, van der Zee SC, van Wijnen JH, van Steen CJ, Brunekreef B. Acute effects of summer air pollution on respiratory health of asthmatic children. Am J Respir Crit Care Med 1997;155(6):2105–2108.PubMedGoogle Scholar
  455. 454.
    Hoek G, Dockery DW, Pope A, Neas L, Roemer W, Brunekreef B. Association between PM10 and decrements in peak expiratory flow rates in children: reanalysis of data from five panel studies. Eur Respir J 1998;11:1307–1311.PubMedCrossRefGoogle Scholar
  456. 455.
    Osunsanya T, Prescott G, Seaton A. Acute respiratory effects of particles: mass or number? Occup Environ Med 2001;58(3):154–159.PubMedCrossRefGoogle Scholar
  457. 456.
    Mortimer KM, Neas LM, Dockery DW, Redline S, Tager IB. The effect of air pollution on inner-city children with asthma. Eur Respir J 2002;19(4):699–705.PubMedCrossRefGoogle Scholar
  458. 457.
    Just J, Ségala C, Sahraoui F, Priol G, Grimfeld A, Neukirch F. Short-term health effects of particulate and photochemical air pollution in asthmatic children. Eur Respir J 2002;20(4):899–906.PubMedCrossRefGoogle Scholar
  459. 458.
    Harré ESM, Price PD, Ayrey RB, Toop LJ, Martin IR, Town GI. Respiratory effects of air pollution in chronic obstructive pulmonary disease: a three month prospective study. Thorax 1997;52:1040–1044.PubMedGoogle Scholar
  460. 459.
    Delfino RJ, Zeiger RS, Seltzer JM, et al. The effect of outdoor fungal spore concentrations on daily asthma severity. Environ Health Perspect 1997; 105(6):622–635.PubMedCrossRefGoogle Scholar
  461. 460.
    Roemer W, Hoek G, Brunekreef B, Haluszka J, Kalandidi A, Pekkanen J. Daily variations in air pollution and respiratory health in a multicentre study: the PEACE project. Pollution Effects on Asthmatic Children in Europe. Eur Respir J 1998; 12(6):1354–1361.PubMedCrossRefGoogle Scholar
  462. 461.
    Roemer W, Clench-Aas J, Englert N, et al. Inhomogeneity in response to air pollution in European children (PEACE project). Occup Environ Med 1999;56(2):86–92.PubMedGoogle Scholar
  463. 462.
    Roemer W, Hoek G, Brunekreef B. Pollution effects on asthmatic children in Europe, the PEACE study. Clin Exp Allergy 2000;30(8):1067–1075.PubMedCrossRefGoogle Scholar
  464. 463.
    Delfino RJ, Quintana PJ, Floro J, et al. Association of FEV1 in asthmatic children with personal and microenvironmental exposure to airborne particulate matter. Environ Health Perspect 2004;112(8):932–941.PubMedCrossRefGoogle Scholar
  465. 464.
    Penttinen P, Timonen KL, Tiittanen P, Mirme A, Ruuskanen J, Pekkanen J. Number concentration and size of particles in urban air: effects on spiro-metric lung function in adult asthmatic subjects. Environ Health Perspect 2001;109(4):319–323.PubMedCrossRefGoogle Scholar
  466. 465.
    Delfino RJ, Zeiger RS, Seltzer JM, Street DH. Symptoms in pediatric asthmatics and air pollution: differences in effects by symptom severity, anti-inflammatory medication use and particulate averaging time. Environ Health Perspect 1998;106(11):751–761.PubMedCrossRefGoogle Scholar
  467. 466.
    Ostro B, Lipsett M, Mann J, Braxton-Owens H, White M. Air pollution and exacerbation of asthma in African-American children in Los Angeles. Epidemiology 2001;12(2):200–208.PubMedCrossRefGoogle Scholar
  468. 467.
    Hiltermann TJN, Stolk J, van der Zee SC, et al. Asthma severity and susceptibility to air pollution. Eur Respir J 1998;11:686–693.PubMedGoogle Scholar
  469. 468.
    Slaughter JC, Lumley T, Sheppard L, Koenig JQ, Shapiro GG. Effects of ambient air pollution on symptom severity and medication use in children with asthma. Ann Allergy Asthma Immunol 2003; 91(4):346–353.PubMedGoogle Scholar
  470. 469.
    von Klot S, Wölke G, Tuch T, et al. Increased asthma medication use in association with ambient fine and ultrafine particles. Eur Respir J 2002; 20(3):691–702.CrossRefGoogle Scholar
  471. 470.
    van der Zee S, Hoek G, Boezen HM, Schouten JP, van Wijnen JH, Brunekreef B. Acute effects of urban air pollution on respiratory health of children with and without chronic respiratory symptoms. Occup Environ Med 1999;56(12):802–812.PubMedGoogle Scholar
  472. 471.
    Peters A, Dockery DW, Heinrich J, Wichmann HE. Short-term effects of particulate air pollution on respiratory morbidity in asthmatic children. Eur Respir J 1997;10(4):872–879.PubMedGoogle Scholar
  473. 472.
    Segala C, Fauroux B, Just J, Pascual L, Grimfeld A, Neukirch F. Short-term effect, of winter air pollution on respiratory health of asthmatic children in Paris. Eur Respir J 1988;11:677–685.Google Scholar
  474. 473.
    Penttinen P, Timonen KL, Tiittanen P, Mirme A, Ruuskanen J, Pekkanen J. Ultrafine particles in urban air and respiratory health among adult asthmatics. Eur Respir J 2001;17(3):428–435.PubMedCrossRefGoogle Scholar
  475. 474.
    Peters A, Dockery DW, Heirich J, Wichmann HE. Medication use modifies the health effects of particulate sulfate air pollution in children with asthma. Environ Health Perspect 1997;105(4):430–435.PubMedCrossRefGoogle Scholar
  476. 475.
    Delfino RJ, Zeiger RS, Seltzer JM, Street DH, McLaren CE. Association of asthma symptoms with peak particulate air pollution and effect modification by anti-inflammatory medication use. Environ Health Perspect 2002;110(10):A607-A617.PubMedCrossRefGoogle Scholar
  477. 476.
    Koenig JQ, Jansen K, Mar TF, et al. Measurement of offline exhaled nitric oxide in a study of community exposure to air pollution. Environ Health Perspect 2003;111(13):1625–1629.PubMedCrossRefGoogle Scholar
  478. 477.
    Koenig JQ, Mar TF, Allen RW, et al. Pulmonary effects of indoor- and outdoor-generated particles in children with asthma. Environ Health Perspect 2005;113(4):499–503.PubMedCrossRefGoogle Scholar
  479. 478.
    Gent JF, Triche EW, Holford TR, et al. Association of low-level ozone and fine particles with respiratory symptoms in children with asthma. Jama 2003;290(14):1859–1867.PubMedCrossRefGoogle Scholar
  480. 479.
    Tiittanen P, Timonen KL, Ruuskanen J, Mirme A, Pekkanen J. Fine particulate air pollution, resuspended road dust and respiratory health among symptomatic children. Eur Respir J 1999;13(2):266–273.PubMedCrossRefGoogle Scholar
  481. 480.
    Silverman F, Hosein HR, Corey P, Holton S, Tarlo SM. Effects of particulate matter exposure and medication use on asthmatics. Arch Environ Health 1992;47(1):51–56.PubMedCrossRefGoogle Scholar
  482. 481.
    Seaton A, MacNee W, Donaldson K, Godden D. Particulate air pollution and acute health effects. Lancet 1995;345(8943):176–178.PubMedCrossRefGoogle Scholar
  483. 482.
    Gilmour PS, Ziesenis A, Morrison ER, et al. Pulmonary and systemic effects of short-term inhalation exposure to ultrafine carbon black particles. Toxicol Appl Pharmacol 2004;195:35–44.PubMedCrossRefGoogle Scholar
  484. 483.
    Oberdörster G, Ferin J, Gelein R, Soderholm SC, Finkelstein J. Role of the alveolar macrophage in lung injury: studies with ultrafine particles. Environ Health Perspect 1992;97:193–199.PubMedCrossRefGoogle Scholar
  485. 484.
    Saldiva PH, Clarke RW, Coull BA, et al. Lung inflammation induced by concentrated ambien air particles is related to particle composition. Am J Respir Crit Care Med 2002;165(12):1610–1617.PubMedCrossRefGoogle Scholar
  486. 485.
    Xia T, Korge P, Weiss JN, et al. Quinones and aromatic chemical compounds in particles particulate matter induced mitochondrial dysfunction: implications for ultrafine particle toxicity. Environ Health Perspect 2004;112(14):1347–1358.PubMedCrossRefGoogle Scholar
  487. 486.
    Carter JD, Ghio AJ, Samet JM, Devlin RB. Cytokine production by human airway epithelial cells after exposure to an air pollution particle is metal-dependent. Toxicol Appl Pharmacol 1997;146(2):180–188.PubMedCrossRefGoogle Scholar
  488. 487.
    Molinelli AR, Madden MC, McGee JK, Stonehuerner JG, Ghio AJ. Effect of metal removal on the toxicity of airborne particulate matter from the Utah Valley. Inhal Toxicol 2002;14(10):1069–1086.PubMedCrossRefGoogle Scholar
  489. 488.
    Campen MJ, Nolan JP, Schladweiler MC, et al. Cardiovascular and thermoregulatory effects of inhaled PM-associated transition metals: a potential interaction between nickel and vanadium sulfate. Toxicol Sci 2001;64(2):243–252.PubMedCrossRefGoogle Scholar
  490. 489.
    Costa DL, Dreher KL. Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models. Environ Health Perspect 1997;105(Suppl 5): 1053–1060.PubMedCrossRefGoogle Scholar
  491. 490.
    Dreher K, Jaskot R, Kodavanti U, Lehmann J, Winsett D, Costa D. Soluble transition metals mediate the acute pulmonary injury and airway hyperreactivity induced by residual oil fly ash particles. Chest 1996;109;3 Suppl):33S,34S.Google Scholar
  492. 491.
    Peters A, Wichmann HE, Tuch T, Heinrich J, Heyder J. Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med 1997;155(4):1376–1383.PubMedGoogle Scholar
  493. 492.
    de Hartog JJ, Hoek G, Peters A, et al. Effects of fine and ultrafine particles on cardiorespiratory symptoms in elderly subjects with coronary heart disease: the ULTRA study. Am J Epidemiol 2003; 157(7):613–623.PubMedCrossRefGoogle Scholar
  494. 493.
    Pekkanen J, Peters A, Hoek G, et al. Particulate air pollution and risk of ST-segment depression during repeated submaximal exercise tests among subjects with coronary heart disease: the Exposure and Risk Assessment for Fine and Ultrafine Particles in Ambient Air (ULTRA) study. Circulation 2002;106(8):933–938.PubMedCrossRefGoogle Scholar
  495. 494.
    Ghio AJ, Kim C, Devlin RB. Concentrated ambient air particles induce mild pulmonary inflammation in healthy human volunteers. Am J Respir Crit Care Med 2000;162(3 Pt 1):981–988.PubMedGoogle Scholar
  496. 495.
    Harder SD, Soukup JM, Ghio AJ, Devlin RB, Becker S. Inhalation of PM25 does not modulate host defense or immune parameters in blood or lung of normal human subjects. Environ Health Perspect 2001;109 (Suppl 4):599–604.PubMedCrossRefGoogle Scholar
  497. 496.
    Gong H, Jr., Linn WS, Sioutas C, et al. Controlled exposures of healthy and asthmatic volunteers to concentrated ambient fine particles in Los Angeles. Inhal Toxicol 2003;15(4):305–325.PubMedCrossRefGoogle Scholar
  498. 497.
    Rudell B, Ledin MC, Hammarström U, Stjernberg N, Lundbäck B, Sandström T. Effects on symptoms and lung function in humans experimentally exposed to diesel exhaust. Occup Environ Med 1995;53(10):658–662.Google Scholar
  499. 498.
    Salvi S, Blomberg A, Rudell B, et al. Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers. Am J Respir Crit Care Med 1999;159(3):702–709.PubMedGoogle Scholar
  500. 499.
    Rudell B, Wass U, Hörstedt P, et al. Efficiency of automotive cabin air filters to reduce acute health effects of diesel exhaust in human subjects. Occup Environ Med 1999;56(4):222–231.PubMedGoogle Scholar
  501. 500.
    Nightingale JA, Maggs R, Cullinan P, et al. Airway inflammatory after controlled exposure to diesel exhaust particulates. Am J Respir Crit Care Med 2000;162(1):161–166.PubMedGoogle Scholar
  502. 501.
    Rudell B, Blomberg A, Helleday R, et al. Bronchoalveolar inflammation after exposure to diesel exhaust: comparison between unfiltered and particle trap filtered exhaust. Occup Environ Med 1999;56(8):527–534.PubMedGoogle Scholar
  503. 502.
    Schwartz J. Air pollution and blood markers of cardiovascular risk. Environ Health Perspect 2001;109 Suppl 3:405–409.PubMedCrossRefGoogle Scholar
  504. 503.
    Pope, CA, 3rd, Hansen, ML, Long, RW, et al. Ambient particulate air pollution, heart rate variability, and blood markers of inflammation in a panel of elderly subjects. Environ Health Perspect 2004; 112(3):339–345.PubMedCrossRefGoogle Scholar
  505. 504.
    Sørensen M, Daneshvar B, Hansen M, et al. Personal PM25 exposure and markers of oxidative stress in blood. Environ Health Perspect 2003;1 11(2):161–166.Google Scholar
  506. 505.
    Riediker M, Cascio WE, Griggs TR, et al. Particulate matter exposure in cars is associated with cardiovascular effects in healthy young men. Am J Respir Crit Cared Med 2004;169(8):934–940.CrossRefGoogle Scholar
  507. 506.
    Seaton A, Soutar A, Crawford V, et al. Particulate air pollution and the blood. Thorax 1999;54(11): 1027–1032.PubMedGoogle Scholar
  508. 507.
    Peters A, Fröhlich M, Döring A, et al. Particulate air pollution is associated with an acute phase response in men; results from the MONICA-Augsburg Study. Eur Heart J 2001;22(14):1198–1204.PubMedCrossRefGoogle Scholar
  509. 508.
    Pekkanen J, Brunner EJ, Anderson HR, Tiitanen P, Atkinson RW. Daily concentrations of air pollution and plasma fibrinogen in London. Occup Environ Med 2000;57(12):818–822.PubMedCrossRefGoogle Scholar
  510. 509.
    Liao D, Heiss G, Chinchilli VM, et al. Association of criteria pollutants with plasma hemostatic/inflammatory markers: a population-based study. J. Expo Anal Environ Epidemiol 2005;15:319–328.PubMedCrossRefGoogle Scholar
  511. 510.
    Peters A, Döring A, Wichmann HE, Koenig W. Increased plasma viscosity during and air pollution episode: a link to mortality? Lancet 1997;349(9065): 1582–1587.PubMedCrossRefGoogle Scholar
  512. 511.
    Liao D, Duan Y, Whitsel EA, et al. Association of higher levels of ambient criteria, pollutants with impaired cardiac autonomic control: a population-based study. Am J Epidemiol 2004;159(8):768–777.PubMedCrossRefGoogle Scholar
  513. 512.
    Park SK, O'Neill MS, Vokonas PS, Sparrow D, Schwartz J. Effects of air pollution on heart rate variability: the VA normative aging study. Environ Health Perspect 2005;113(3):304–309.PubMedGoogle Scholar
  514. 513.
    Pope CA, 3rd, Verrier RL, Lovett EG, et al. Heart rate variability associated with particulate air pollution. Am Heart J 1999;138(5 Pt 1):890–899.PubMedCrossRefGoogle Scholar
  515. 514.
    Gold DR, Litonjua A, Schwartz J, et al. Ambient popullation and heart rate variability. Circulation 2000;101(11):1267–1273.PubMedGoogle Scholar
  516. 515.
    Chan CC, Chuang KJ, Shiao GM, Lin LY. Personal exposure to submicrometer particles and heart rate variability in human subjects. Environ Health Perspect 2004;112(10):1063–1067.PubMedCrossRefGoogle Scholar
  517. 516.
    Liao D, Creason J, Shy C, Williams R, Watts R, Sweidinger R. Daily variation of particulate air pollution and poor cardiac autonomic control in the elderly. Environ Health Perspect 1999;107(7): 521–525.PubMedCrossRefGoogle Scholar
  518. 517.
    Holguín F, Téllez-Rojo MM, Hernández M, et al. Air pollution and heart rate variability among the elderly in Mexico City. Epidemiology 2003;14(5): 521–527.PubMedCrossRefGoogle Scholar
  519. 518.
    Creason J, Neas L, Walsh D, et al. Particulate matter and heart rate variability among elderly retiress: the Baltimore 1998 PM study. J Expo Anal Environ Epidemiol 2001;11:116–122.PubMedCrossRefGoogle Scholar
  520. 519.
    Brauer M, Ebelt ST, Fisher TV, Brumm J, Petkau AJ, Vedal S. Exposure of chronic obstructive pulmonary disease patients to particles: respiratory and cardiovascular health effects. J Expo Anal Environ Epidemiol 2001;11(6):490–500.PubMedCrossRefGoogle Scholar
  521. 520.
    Sullivan JH, Schreuder AB, Trenga CA, et al. Association between short term exposure to fine particulate matter and heart rate variability in older subjects with and without heart disease. Thorax 2005;60(6):462–466.PubMedCrossRefGoogle Scholar
  522. 521.
    Vallejo M, Ruiz S, Hermosillo AG, Borja-Aburto VH, Cárdenas M. Ambient fine particles modify heart rate variability in young healthy adults. J Expo Anal Environ Epidemiol 2005;15:1–6.CrossRefGoogle Scholar
  523. 522.
    Magari SR, Hauser R, Schwartz J, Williams PL, Smith TJ, Christiani DC. Association of heart rate variability with occupational and environmental exposure to particulate air pollution. Circulation 2001;104(9):986–991.PubMedGoogle Scholar
  524. 523.
    Magari SR, Schwartz J, Williams PL, Hauser R, Smith TJ, Christiani DC. The association between personal measurements of environmental exposure to particulates and heart rate variability. Epidemiology 2002;13(3):305–310.PubMedCrossRefGoogle Scholar
  525. 524.
    Riediker M, Devlin RB, Griggs TR, et al. Cardiovascular effects in patrol officers are associated with fine particulate matter from brake wear and engine emissions. Part Fibre Toxicol 2004;1(1):2.PubMedCrossRefGoogle Scholar
  526. 525.
    Devlin RB, Ghio AJ, Kehrl H, Sanders G, Cascio W. Elderly humans exposed to concentrated air pollution particles have decreased heart rate variability. Eur Respir J Suppl 2003;40:76s-80s.PubMedCrossRefGoogle Scholar
  527. 526.
    Ebelt ST, Wilson WE, Brauer M. Exposure to ambient and nonambient components of particulate matter: a comparison of health effects. Epidemiology 2005;16(3):396–405.PubMedCrossRefGoogle Scholar
  528. 527.
    Peters A, Perz S, Döring A, Stieber J, Koenig W, Wichmann HE. Increases in heart rate during an air pollution episode. Am J Epidemiol 1999;150(10): 1094–1098.PubMedGoogle Scholar
  529. 528.
    Dockery DW, Pope CA, 3rd, Kanner RE, Martin Villegas G, Schwartz J. Daily changes in oxygen saturation and pulse rate associated with particulate air pollution and barometric pressure. Res Rep Health Eff Inst 1999(83):1–19; discussion 21–28.PubMedGoogle Scholar
  530. 529.
    Laden F, Neas LM, Dockery DW, Schwartz J. Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environ Health Perspect 2000;108(10):941–947.PubMedCrossRefGoogle Scholar
  531. 530.
    Janssen NA, Brunekreef B, van Vliet P, et al. The relationship between air pollution from heavy traffic and allergic sensitization, bronchial hyperesponsiveness, and respiratory symptoms in Dutch schoolchildren. Environ Health Perspect 2003;111(12):1512–1518.PubMedCrossRefGoogle Scholar
  532. 531.
    Hoek G, Brunekreef B, Goldbohm S, Fischer P, van den Brandt PA. Association between mortality and indicators of traffic-related air pollution in the Netherlands: a cohort study. Lancet 2002;360(9341): 1203–1209.PubMedCrossRefGoogle Scholar
  533. 532.
    Bremner SA, Anderson HR, Atkinson RW, et al. Short-term associations between outdoor air pollution and mortality in London 1992–4. Occup Environ Med 1999;56(4):237–244.PubMedGoogle Scholar
  534. 533.
    Schwartz J, Litonjua A, Suh H, et al. Traffic related pollution and heart rate variability in a panel of elderly subjects. Thorax 2005;60(6):455–461.PubMedCrossRefGoogle Scholar
  535. 534.
    Huang YC, Ghio AJ, Stonehuerner J, et al. The role of soluble components in ambient fine particles-induced changes in human lungs and blood. Inhal Toxicol 2003;15(4):327–342.PubMedCrossRefGoogle Scholar
  536. 535.
    Gavett SH, Madison SL, Dreher KL, Winsett DW, McGee JK, Costa DL. Metal and sulfate composition of residual oil fly ash determines airway hyper-reactivity and lung injury in rats. Environ Res 1997; 72(2):162–172.PubMedCrossRefGoogle Scholar
  537. 536.
    Koistinen KJ, Edwards RD, Mathys P, Ruuskanen J, Künzli N, Jantunen MJ. Sources of fine particulate matter in personal exposures and residential indoor, residential outdoor and workplace microenvironments in the Helsinki phase of the EXPOLIS study. Scand J Work Environ Health 2004;30Suppl 2:36–46.PubMedGoogle Scholar
  538. 537.
    Conner TL, Norris GA, Landis MS, Williams RW. Individual particle analysis of indoor, outdoor, and community samples from the 1998 Baltimore particulate matter study. Atmospher Environ 2001; 35:3935–3946.CrossRefGoogle Scholar
  539. 538.
    Reff A, Turpin BJ, Porcja RJ, et al. Functional group characterization of indoor, outdoor, and personal PM25: results from RIOPA. Indoor Air 2005;15(1): 53–61.PubMedCrossRefGoogle Scholar
  540. 539.
    Long CM, Suh HH, Kobzik L, Catalano PJ, Ning YY, Koutrakis P. A pilot investigation of the relative toxicity of indoor and outdoor fine particles: in vitro effects of endotoxin and other particulate properties. Environ Health Perspect 2001;109(10): 1019–1026.PubMedCrossRefGoogle Scholar
  541. 540.
    Glick TH, Gregg MB, Berman B, Mallison G, Rhodes WW, Jr., Kassanoff I. Pontia fever. An epidemic of unknown etiology in a health department: I. Clinical and epidemiologic aspects. Am J Epidemiol 1978;107(2):149–160.PubMedGoogle Scholar
  542. 541.
    Arroyo JC, Postic B, Brown A, Harrison K, Birgenheier R, Dowda H. Influenza A/Philippines/2/82 outbreak in a nursing home: limitations of influenza vaccination in the aged. Am J Infect Control 1984;12(6):329–334.PubMedCrossRefGoogle Scholar
  543. 542.
    Goodman RA, Orenstein WA, Munro TF, Smith SC, Sikes RK. Impact of influenza A in a nursing home. Jama 1982;247(10):1451–1453.PubMedCrossRefGoogle Scholar
  544. 543.
    Gross PA, Rodstein M, LaMontagne JR, et al. Epidemiology of acute respiratory illness during an influenza outbreak in a nursing home. A prospective study. Arch Intern Med 1988;148(3):559–561.PubMedCrossRefGoogle Scholar
  545. 544.
    Horman JT, Stetler HC, Israel E, Sorley D, Schipper MT, Joseph JM. An outbreak of influenza A in a nursing home. Am J Public Health 1986;76(5):501–504.PubMedGoogle Scholar
  546. 545.
    Wong TW, Lee CK, Tam W, et al. Cluster of SARS among medical students exposed to single patient, Hong Kong. Emerg Infect Dis 2004;10(2):269–276.PubMedGoogle Scholar
  547. 546.
    Yu IT, Sung JJ. The epidemiology of the outbreak of severe acute respiratory syndrome (SARS) in Hong Kong—what we do know and what we don't. Epidemiol Infect 2004;132(5):781–786.PubMedCrossRefGoogle Scholar
  548. 547.
    Shelton BG, Kirkland KH, Flanders WD, Morris GK. Profiles of airborne fungi in buildings and outdoor environments in the United States. Appl Environ Microbiol 2002;38(4):1743–1753.CrossRefGoogle Scholar
  549. 548.
    Kolstad HA, Brauer C, Iversen M, Sigsgaard T, Mikkelsen S. Do indoor molds in nonindustrial environments threaten workers' health? A review of the epidemiologic evidence. Epidemiol Rev 2002;24(2):203–217.PubMedCrossRefGoogle Scholar
  550. 549.
    Lee T, Grinshpun SA, Martuzevicius D, et al. Relationship between indoor and outdoor bioaerosols collected with a button inhalable aerosol sampler in urban homes. Indoor Air 2006;16(1):37–47.PubMedCrossRefGoogle Scholar
  551. 550.
    Ebbehøj NE, Meyer HW, Würtz H, et al. Molds in floor dust, building-related symptoms, and lung function among male and famale schoolteachers. Indoor Air 2005;15(Suppl 10):7–16.PubMedCrossRefGoogle Scholar
  552. 551.
    Nilsson A, Kihlström E, Lagesson V, et al. Microorganisms and volatile organic compounds in air-borne dust from damp residences. Indoor Air 2004;14(2):74–82.PubMedCrossRefGoogle Scholar
  553. 552.
    Toivola M, Alm S, Reponen T, Kolari S, Nevalainen A. Personal exposures and microenvironmental concentrations of particles and bioaerosols. J Environ Monit 2002;4(1):166–174.PubMedCrossRefGoogle Scholar
  554. 553.
    Chew GL, Douwes J, Doekes G, et al. Fungal extracellular polysaccharides, β(1→3)-glucans and culturable fungi in repeated sampling of house dust. Indoor Air 2001;11(3):171–178.PubMedCrossRefGoogle Scholar
  555. 554.
    Douwes J, van der Sluis B, Doekes G, et al. Fungal extracellular polysaccharides in house dust as a marker for exposure to fungi: relations with culturable fungi, reported home dampness, and respiratory symptoms. J Allergy Clin Immunol 1999;103(3 Pt 1): 494–500.PubMedCrossRefGoogle Scholar
  556. 555.
    Foto M, Vrijmoed LL, Miller JD, Ruest K, Lawton M, Dales RE. A comparison of airborne ergosterol, glucan and Air-O-Cell data in relation to physical assessments of mold damage and some other parameters. Indoor Air 2005;15(4):257–266.PubMedCrossRefGoogle Scholar
  557. 556.
    Vojdani A, Thrasher JD, Madison RA, Gray MR, Heuser G, Campbell AW. Antibodies to molds and satratoxin in individuals exposed in water-damaged buildings. Arch Environ Health 2003;58(7): 421–432.PubMedGoogle Scholar
  558. 557.
    Johanning E, Biagini R, Hull D, Morey P, Jarvis B, Landsbergis P. Health and immunology study following exposure to toxigenic fungi (Stachybotrys chartarum) in a water-damaged office environment. Int Arch Occup Environ Health 1996;68(4): 207–218.PubMedGoogle Scholar
  559. 558.
    Johanning E, Landsbergis P, Gareis M, Yang CS, Olmsted E. Clinical experience and results of a Sentinel Health Investigation related to indoor fungal exposure. Environ Health Perspect 1999; 107 (Suppl 3:489–494.PubMedGoogle Scholar
  560. 559.
    Bornehag CG, Sundell J, Bonini S, et al. Dampness in buildings as a risk factor for health effects, EUROEXPO: a multidisciplinary review of the literature (1998–2000) on dampness and mite exposure in buildings and health effects. Indoor Air 2004;14(4):243–257.PubMedCrossRefGoogle Scholar
  561. 560.
    Bornehag CG, Blomquist G, Gyntelberg, F, et al. Dampness in buildings and health. Nordic interdisciplinary review of the scientific evidence on associations between exposure to ‘dampness’ and health effects, NORDDAMP. Indoor Air 2001;11: 72–86.PubMedCrossRefGoogle Scholar
  562. 561.
    Engvall K, Norrby C, Norbäck D. Sick building syndrome in relation to building dampness in multifamily residental buildings in Stockholm. Int Arch Occup Environ Health 2001;74(4):270–278.PubMedCrossRefGoogle Scholar
  563. 562.
    Park JH, Schleiff PL, Attfiel MD, Cox-Ganser JM, Kreiss K. Building-related respiratory symptoms can be predicted with semi-quantitative indices of exposure to dampness and mold. Indoor Air 2004; 14(6):425–433.PubMedCrossRefGoogle Scholar
  564. 563.
    Bornehag CG, Sundell J, Hagerhed-Engman L, Sigsggard T, Janson S, Aberg N. ‘Dampness’ at home and its association with airway, nose, and skin symptoms among 10,851 preschool children in Sweden: a cross-sectional study. Indoor Air 2005;15Suppl 10:48–55.PubMedCrossRefGoogle Scholar
  565. 564.
    Meyer HW, Jensen KA, Nielsen KF, et al. Double blind placebo controlled exposure to molds: exposure system and clinical results. Indoor Air 2005;15 Suppl 10:73–80.PubMedCrossRefGoogle Scholar
  566. 565.
    Meyer HW, Würtz H, Suadicani P, Valbjørn O, Sigsgaard T, Gyntelberg F. Molds in floor dust and building-related symptoms among adolescent school children: a problem for boys only? Indoor Air 2005;15Suppl 10:17–24.PubMedCrossRefGoogle Scholar
  567. 566.
    Chao HJ, Schwartz J, Milton DK, Burge HA. The work environment and workers' health in four large office buildings. Environ Health Perspect 2003;111(9):1242–1248.PubMedCrossRefGoogle Scholar
  568. 567.
    Menzies D, Comtois P, Pasztor J, Nunes F, Hanley JA. Aeroallergens and work-related respiratory symptoms among office workers. J Allergy Clin Immunol 1998;101(1 Pt 1):38–44.PubMedCrossRefGoogle Scholar
  569. 568.
    Cooley JD, Wong WC, Jumper CA, Straus, DC. Correlation between the prevalence of certain fungi and sick building syndrome. Occup Environ Med 1998;55(9):579–584.PubMedCrossRefGoogle Scholar
  570. 569.
    McGrath JJ, Wong WC, Cooley JD, Straus DC. Continually measured fungal profiles in sick building syndrome. Curr Microbiol 1999;38(1):33–36.PubMedCrossRefGoogle Scholar
  571. 570.
    Meklin T, Potus T, Pekkanen J, Hyvärinen A, Hirvonen MR, Nevalainen A. Effects of moisturedamage repairs on microbial exposure and symptoms in schoolchildren. Indoor Air 2005;15 Suppl 10:40–47.PubMedCrossRefGoogle Scholar
  572. 571.
    Ebbehøj NE, Hansen MØ, Sigsgaard T, Larsen L. Building-related symptoms and molds: a two-step intervention study. Indoor Air 2002;12(4):273–277.PubMedCrossRefGoogle Scholar
  573. 572.
    Nafstad P, Øie L, Mehl R, et al. Residential dampness problems and symptoms and signs of bronchial obstruction in young Norwegian children. Am J Respir Crit Care Med 1998;157(2):410–414.PubMedGoogle Scholar
  574. 573.
    Wickman M, Melén E, Berglind N, et al. Strategies for preventing wheezing and asthma in small children. Allergy 2003;58(8):742–747.PubMedCrossRefGoogle Scholar
  575. 574.
    Jaakkola JJ, Hwang BF, Jaakkola N. Home dampness and molds, parental atopy, and asthma in childhood: a six-year population-based cohort study. Environ Health Perspect 2005;113(3):357–361.PubMedGoogle Scholar
  576. 575.
    Belanger K, Beckett W, Triche E, et al. Symptoms of wheeze and persistent cough in the first year of life: associations with indoor allergens, air contaminants, and maternal history of asthma. Am J Epidemiol 2003;158(3):195–202.PubMedCrossRefGoogle Scholar
  577. 576.
    Gent JF, Ren P, Belanger K, et al. Levels of house-hold mold associated with respiratory symptoms in the first year of life in a cohort at risk for asthma. Environ Health Perspect 2002;110(12):A781-A786.PubMedCrossRefGoogle Scholar
  578. 577.
    Stark PC, Burge HA, Ryan LM, Milton DK, Gold DR. Fungal levels in the home and lower respiratory tract illnesses in the first year of life. Am J Respir Crit Care Med 2003;168(2):232–237.PubMedCrossRefGoogle Scholar
  579. 578.
    Neas LM, Dockery DW, Burge H, Koutrakis P, Speizer FE. Fungus spores, air pollutants, and other determinants of peak expiratory flow rate in children. Am J Epidemiol 1996;143(8):797–807.PubMedGoogle Scholar
  580. 579.
    Higgins BG, Francis HC, Yates C, et al. Environmental exposure to air pollution and allergens and peak flow changes. Eur Respir J 2000;16(1):61–66.PubMedCrossRefGoogle Scholar
  581. 580.
    Delfino RJ, Coate BD, Zeiger RS, Seltzer JM, Street DH, Koutrakis P. Daily asthma severity in relation to personal ozone exposure and outdoor fungal spores. Am J Respir Crit Care Med 1996;154(3 Pt 1):633–41.PubMedGoogle Scholar
  582. 581.
    Dales RE, Cakmak S, Burnett RT, Judek S, Coates F, Brook JR. Influence of ambient fungal spores on emergency visits for asthma to a regional children's hospital. Am J Respir Crit Care Med 2000;162(6):2087–2090.PubMedGoogle Scholar
  583. 582.
    Lierl MB, Hornung RW. Relationship of outdoor air quality to pediatric asthma exacerbations. Ann Allergy Asthma Immunol 2003;90(1):28–33.PubMedGoogle Scholar
  584. 583.
    Targonski PV, Persky VW, Ramekrishnan V. Effect of environmental molds on risk of death from asthma during the pollen season. J Allergy Clin Immunol 1995;95(5 Pt 1):955–961.PubMedCrossRefGoogle Scholar
  585. 584.
    Perzanowski MS, Sporik R, Squillace SP, et al. Association of sensitization to Alternaria allergens with asthma among school-age children. J Allergy Clin Immunol 1998;101(5):626–632.PubMedCrossRefGoogle Scholar
  586. 585.
    Chinn S, Burney P, Sunyer J, Jarvis D, Luczynska C. Sensitization to individual allergens and bronchial responsiveness in the ECRHS. European Community Respiratory Health Survey. Eur Respir J 1999;14(4):876–884.PubMedCrossRefGoogle Scholar
  587. 586.
    Lopez M, Voigtlander JR, Lehrer SB, Salvaggio JE. Bronchoprovocation studies in basidiospore-sensitive allergic subjects with asthma. J Allergy Clin Immunol 1989;84(2):242–246.PubMedCrossRefGoogle Scholar
  588. 587.
    Licorish K, Novey HS, Kozak P, Fairshter RD, Wilson AF. Role of Alternaria and Penicillium spores in the pathogenesis of asthma. J Allergy Clin Immunol 1985;76(6):819–825.PubMedCrossRefGoogle Scholar
  589. 588.
    Douwes J. (1→3)-β-D-glucans and respiratory health: a review of the scientific evidence. Indoor Air 2005;15(3):160–169.PubMedCrossRefGoogle Scholar
  590. 589.
    Instanes C, Ormstad H, Rydjord B, Wiker HG, Hetland G. Mould extracts increase the allergic response to ovalbumin in mice. Clin Exp Allergy 2004;34(10):1634–1641.PubMedCrossRefGoogle Scholar
  591. 590.
    Assoulin-Daya Y, Leong A, Shoenfeld Y, Gershwin ME. Studies of sick building syndrome. IV. Mycotoxicosis. J Asthma 2002;39(3):191–201.PubMedCrossRefGoogle Scholar
  592. 591.
    Bretz M, Knecht A, Gockler S, Humpf HU. Structural elucidation and analysis of thermal degradation products of the Fusarium mycotoxin nivalenol. Mol Nutr Food Res 2005;49(4):309–316.PubMedCrossRefGoogle Scholar
  593. 592.
    Marin DE, Taranu I, Bunaciu RP, et al. Changes in performance, blood parameters, humoral and cellular immune responses in weanling piglets exposed to low doses of aflatoxin. J Anim Sci 2002;80(5):1250–1257.PubMedGoogle Scholar
  594. 593.
    Rotter BA, Prelusky DB, Pestka JJ. Toxicology of deoxynivalenol (vomitoxin). J Toxicol Environ Health 1996;48(1):1–34.PubMedCrossRefGoogle Scholar
  595. 594.
    Tryphonas H, Iverson F, So Y, et al. Effects of deoxynivalenol (vomitoxin) on the humoral and cellular immunity of mice. Toxicol Lett 1986;30(2):137–150.PubMedCrossRefGoogle Scholar
  596. 595.
    Kurtz RS, Czuprynski CJ. Effect of aflatoxin B1 on in vitro production of interleukin-1 by bovine mononuclear phagocytes. Vet Immunol Immunopathol 1992;34(1–2):149–158.PubMedCrossRefGoogle Scholar
  597. 596.
    Lorenzana RM, Beasley VR, Buck WB, Ghent AW. Experimental T-2 toxicosis in swine. II. Effect of intravascular T-2 toxin on serum enzymes and biochemistry, blood coagulation, and hematology. Fundam Appl Eoxicol 1985;5(5):893–901.CrossRefGoogle Scholar
  598. 597.
    Iverson F, Armstrong C, Nera E, et al. Chronic feeding study of deoxynivalenol in B6C3F1 male and female mice. Teratog Carcinog Mutagen 1995;15(6):283–306.PubMedCrossRefGoogle Scholar
  599. 598.
    Schiefer HB, Rousseaux CG, Hancock DS, Blakley BR. Effects of low-level long-term oral exposure to T-2 toxin in CD-1 mice. Food Chem Toxicol 1987;25(8):593–601.PubMedCrossRefGoogle Scholar
  600. 599.
    Poapolathep A, Ohtsuka R, Kiatipattanasakul W, Ishigami N, Nakayama H, Doi K. Nivalenol—induced apoptosis in thymus, spleen and Peyer's patches of mice. Exp Toxicol Pathol 2002;53(6):441–446.PubMedCrossRefGoogle Scholar
  601. 600.
    Yang GH, Jarvis BB, Chung YJ, Pestka JJ. Apoptosis induction by the satratoxins and other trichothecene mycotoxins: relationship to ERK, p38 MAPK, and SAPK/INK activation. Toxicol Appl Pharmacol 2000;164(2):149–160.PubMedCrossRefGoogle Scholar
  602. 601.
    Ihara T, Sugamata M, Sekijima M, Okumura H, Yoshino N, Ueno Y. Apoptotic cellular damage in mice after T-2 toxin-induced acute toxicosis. Nat Toxins 1997;5(4):141–145.PubMedCrossRefGoogle Scholar
  603. 602.
    Rao CY, Brain JD, Burge HA. Reduction of pulmonary toxicity of Stachybotrys chartarum spores by methanol extraction of mycotoxins. Appl Environ Microbiol 2000;66:2817–2821.PubMedCrossRefGoogle Scholar
  604. 603.
    Yike I, Miller MJ, Tomashefski J, Walenga R, Dearborn DG. Infaht rat model of Stachybotrys chartarum induced mycotoxicosis. Mycopathologia 2001;154:139–152.CrossRefGoogle Scholar
  605. 604.
    Leino M, Mäkelä M, Reijula K, et al. Intranasal exposure to a damp building mould, Stachybotrys chartarum induced lung inflamma tion in mice by satratoxin-independent mechanisms. Clin Exp Allergy 2003;33(11):1603–1610.PubMedCrossRefGoogle Scholar
  606. 605.
    Yike I, Rand TG, Dearborn DG. Acute inflammatory responses to Stachybotrys chartarum in the lungs of infant rats: time course and possible mechanisms. Toxicol Sci 2005;84(2):408–417.PubMedCrossRefGoogle Scholar
  607. 606.
    Flemming J, Hudson B, Rand TG. Comparison of inflammatory and cytotoxic lung responses in mice after intratracheal exposure to spores of two different Stachybotrys chartarum, strains. Toxicol Sci 2004;78(2):267–275.PubMedCrossRefGoogle Scholar
  608. 607.
    Feger TA, Rupp NT, Kuhn FA, Ford JL, Dolen WK. Local and systemic eosinophil activation in allergic fungal sinusitis. Ann Allergy Asthma Immunol 1997;79(3):221–225.PubMedGoogle Scholar
  609. 608.
    Collins M, Nair S, Smith W, Kette F, Gillis D, Wormald PJ. Role of local immunoglobulin E production in the pathophysiology of noninvasive fungal sinusitis. Laryngoscope 2004;114(7):1242–1246.PubMedCrossRefGoogle Scholar
  610. 609.
    deShazo RD, Swain RE. Diagnostic criteria for allergic fungal sinusitis. J Allergy Clin Immunol 1995;96(1):24–35.PubMedCrossRefGoogle Scholar
  611. 610.
    Kelce WR, Stone CR, Laws SC, Gray LE, Kemppainen JA, Wilson EM. Persistent DDT meabolite p,p′-DDE is a potent androgen receptor antagonist. Nature 1995;375(6532):581–585.PubMedCrossRefGoogle Scholar
  612. 611.
    Meerts IA, Hoving S, van den Berg JH, et al. Effects of in utero exposure to 4-hydroxy-2,3,3′,4′,5-pentachlorobiphenyl (4-OH-CB107) on developmental landmarks, steroid hormone levels, and female estrous cyclicity in rats. Toxicol Sci 2004;82(1):259–267.PubMedCrossRefGoogle Scholar
  613. 612.
    Silva E, Rajapakse N, Kortenkamp A. Something from “nothing”-eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environ Sci Technol 2002;36(8):1751–1756.PubMedCrossRefGoogle Scholar
  614. 613.
    Garner CE, Jefferson WN, Burka LT, Matthews HB, Newbold RR. In vitro estrogenicity of the catechol metabolites of selectéd polychlorinated biphenyls. Toxicol Appl Pharmacol 1999;154(2):188–197.PubMedCrossRefGoogle Scholar
  615. 614.
    Fielden MR, Chen I, Chittim B, Safe SH, Zacharewski TR. Examination of the estrogenicity of. 2,4,6,2∟,6′-pentachlorobiphenyl (PCB 104), its hydroxylated metabolite 2,4,6,2′,6′-pentachloro-4-biphenylol (HO-PCB 104), and a further chlorinated derivative, 2,4,6,2′,4′,6′-hexachlorobiphenyl (PCB 155). Environ Health Perspect 1997;105(11):1238–1248.PubMedCrossRefGoogle Scholar
  616. 615.
    Dallinga JW, Moonen EJ, Dumoulin JC, Evers JL, Geraedts JP, Kleinjans JC. Decreased human semen quality and organochlorine compounds in blood. Hum Reprod 2002;17(8):1973–1979.PubMedCrossRefGoogle Scholar
  617. 616.
    Richthoff J, Rylander L, Jönsson BA, et al. Serum levels of 2,2′,4,4′,5,5′-hexachlorobiphenyl (CB-153) in relation to markers of reproductive function in young males from the general Swedish population. Environ Health Perspect 2003;111(4):409–413.PubMedCrossRefGoogle Scholar
  618. 617.
    Abell A, Ernst E, Bonde JP. Semen quality and sexual hormones in greenhouse workers. Scand J Work Environ Health 2000;26(6):492–500.PubMedGoogle Scholar
  619. 618.
    Kamijima M, Hibi H, Gotoh M, et al. A survey of semen indices in insecticide sprayers. J Occup Health 2004;46(2):109–118.PubMedCrossRefGoogle Scholar
  620. 619.
    Hauser R, Williams P, Altshul L, Calafat AM. Evidence of interaction between polychlorinated biphenyls and phthalates in relation to human sperm motility. Environ Health Perspect 2005;113(4):425–430.PubMedCrossRefGoogle Scholar
  621. 620.
    Payne J, Scholze M, Kortenkamp A. Mixtures of four organochlorines enhance human breast cancer cell proliferation. Environ Health Perspect 2001;109(4):391–397.PubMedCrossRefGoogle Scholar
  622. 621.
    Rajapakse N, Silva E, Kortenkamp A. Combining xenoestrogens at levels below individual no-observed-effect concentrations dramatically enhances steroid hormone action. Environ Health Perspect 2002;110(9):917–921.PubMedCrossRefGoogle Scholar
  623. 622.
    Rajapakse N, Silva E, Scholze M, Kortenkamp A. Deviation from additivity with estrogenic mixtures containing 4-nonylphenol and 4-tert-octylphenol detected in the E-SCREEN assay. Environ Sci Technol 2004;38(23):6343–6352.PubMedCrossRefGoogle Scholar
  624. 623.
    Thorpe KL, Hutchinson TH, Hetheridge MJ, Scholze M, Sumpter JP, Tyler CR. Assessing the biological potency of binary mixtures of environmental estrogens using vitellogenin induction in juvenile rainbow trout (Oncorhynchus mykiss). Environ Sci Technol 2001;35(12):2476–2481.PubMedCrossRefGoogle Scholar
  625. 624.
    Fromme H, Lahrz T, Piloty M, Gebhart H, Oddoy A, Rüden H. Occurrence of phthalates and musk fragrances in indoor air and dust from apartments and kindergartens in Berlin (Germany). Indoor Air 2004;14(3):188–195.PubMedCrossRefGoogle Scholar
  626. 625.
    Becker K, Seiwert M, Angerer J, et al. DEHP metabolites in urine of children and DEHP in house dust. Int J Hyg Environ Health 2004;207(5):409–417.PubMedCrossRefGoogle Scholar
  627. 626.
    Rudel RA, Camann DE, Spengler JD, Korn LR, Brody JG. Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. Environ Sci Technol 2003;37(20):4543–4553.PubMedCrossRefGoogle Scholar
  628. 627.
    David RM. Exposure to phthalate esters. Environ Health Perspect 2000;108(10):A440.PubMedCrossRefGoogle Scholar
  629. 628.
    Kohn MC, Parham F, Masten SA, et al. Human exposure estimates, for phthalates. Environ Health Perspect 2000;108(10):A440-A442.PubMedCrossRefGoogle Scholar
  630. 629.
    Hill RH, Jr., Head SL, Baker S, et al. Pesticide residues in urine of adults living in the United States: reference range concentrations. Environ Res 1995;71(2):99–108.PubMedCrossRefGoogle Scholar
  631. 630.
    Koch HM, Hardt J, Angerer J. Biological monitoring of exposure of the general population to the organophosphorus pesticides chlorpyrifos and chlorpyrifos-methyl by determination of their specific metabolite 3,5,6-trichloro-2-pyridinol. Int J Hyg Environ Health 2001;204(2–3):175–180.PubMedCrossRefGoogle Scholar
  632. 631.
    Ryan JJ, Hsu CC, Boyle MJ, Guo YL. Blood serum levels of PCDFs and PCBs in Yu-Cheng children peri-natally exposed to a toxic rice oil. Chemosphere 1994;29(6):1263–1278.PubMedCrossRefGoogle Scholar
  633. 632.
    Bertazzi PA, Bernucci I, Brambilla G, Consonni D, Pesatori AC. The Seveso studies on early and long-term effects of dioxin exposure: a review. Environ Health Perspect 1998;106 Suppl 2:625–633.PubMedCrossRefGoogle Scholar
  634. 633.
    Daniels JL, Longnecker MP, Klebanoff MA, et al. Prenatal exposure to low-level polychlorinated biphenyls in relation to mental and motor development at 8 months. Am J Epidemiol 2003;157(6):485–492.PubMedCrossRefGoogle Scholar
  635. 634.
    Rodes CE, Lawless PA, Evans GF, et al. The relationships between personal PM exposures for elderly populations and indoor and outdoor concentrations for three retirement center scenarios. J Expo Anal Environ Epidemiol 2001;11:103–115.PubMedCrossRefGoogle Scholar
  636. 635.
    Brauer M, Hruba F, Mihalikova E, et al. Personal exposure to particles in Banská Bystrica, Slovakia. J Expo Anal Environ Epidemiol 2000;10:478–487.PubMedCrossRefGoogle Scholar
  637. 636.
    Williams R, Suggs J, Creason J, et al. The 1998 Baltimore Particulate Matter Epidemiology-Exposure Study: part 2. Personal exposure assessment associated with an elderly study population. J Expo Anal Environ Epidemiol 2000;10(6 Pt 1):533–543.PubMedCrossRefGoogle Scholar
  638. 637.
    Georgiadis P, Stoikidou M, Topinka J, et al. Personal exposures to PM25 and polycyclic aromatic hydrocarbons and their relationship to environmental tobacco smoke at two locations in Greece. J Expo Anal Environ Epidemiol 2001;11(3):169–183.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  • Andrea T. Borchers
    • 1
  • Christopher Chang
    • 1
    • 3
  • Carl L. Keen
    • 2
  • M. Eric Gershwin
    • 1
  1. 1.Division of Rheumatology, Allergy and Clinical ImmunologyUniversity of California at DavisDavis
  2. 2.Department of NutritionUniversity of California at DavisDavis
  3. 3.AirMDSacramento

Personalised recommendations