Advertisement

Clinical Proteomics

, Volume 1, Issue 3–4, pp 365–373 | Cite as

Serum proteomic pattern for predicting recurrence of undifferentiated nasopharyngeal carcinoma after radiotherapy

A potential surrogate marker
  • Terence C. W. Poon
  • Shuk Man Chow
  • Brigette B. Y. Ma
  • Edwin P. Hui
  • Anthony T. C. Chan
Open Access
Original Article

Abstract

Although most patients with early-stage nasopharyngeal carcinoma (NPC) can be cured by radiotherapy, there is a high recurrence rate in patients with advanced NPC. We attempted to identify proteomic patterns in sera for predicting tumor recurrence. Pretreatment sera were collected from 64 NPC patients with complete remission after radiotherapy. Serum proteins were profiled by SELDI ProteinChip technology, and correlated with local/distant recurrence.

Forty proteomic features were significantly different between the patient groups with and without tumor recurrence. Univariate analyses showed that 32 of them were significantly associated with time to first recurrence. Multivariate Cox-regression analyses identified International Union Against Cancer (UICC) stage and two proteomic features with mass/charge (m/z) values of 8808 and 6626 as independent prognostic indicators for tumor recurrence. The hazard ratios were 2.0 (95% confidence interval, CI 1.3–3.2) and 0.79 (95% CI 0.64–0.96) for a double of peak intensity of proteomic feature m/z 8808 and m/z 6626, respectively. These two proteomic features were also independent prognosticators for overall survival. A decision tree was constructed to predict the tumor recurrence by using UICC stage, proteomic feature m/z 8808, and proteomic feature m/z 6626, and evaluated by Leave-One-Out crossvalidation. Kaplan-Meier analysis confirmed that the decision tree could predict both recurrencefree survival and overall survival. The positive and negative predictive values for tumor recurrence within 4 yr were 74 and 89%, respectively.

A serum proteomic pattern comprising features m/z 8808 and m/z 6626 is a potential surrogate marker of disease recurrence after radiotherapy in NPC.

Key Words

SELDI-TOF MS ProteinChip array prognosis decision tree survival 

References

  1. 1.
    Ho, J.H.C. (1978) An epidemiologic and clinical study of nasopharyngeal carcinoma. Int. J. Radiat. Oncol. Bio. Phys. 4:183–205.Google Scholar
  2. 2.
    Teo, P.M., Yu, P., Lee, W.Y., Leung, S.F., Kwan, W.H., Yu, K.H., et al. (1996) Significant prognosticators after primary radiotherapy in 903 nondisseminated nasopharyngeal carcinoma evaluated by computer tomography. Int. J. Radiat. Oncol. Biol. Phys. 36:291–304.PubMedCrossRefGoogle Scholar
  3. 3.
    Petricoin III, E.F., Ardekani, A.M., Hitt, A.B., Levine, P.J., Fusaro, V.A., Steinberg, S.M., et al. (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359:572–577.PubMedCrossRefGoogle Scholar
  4. 4.
    Poon, T.C.W., Yip, T.T., Chan, A.T.C., Yip, C., Yip, V., Mok, T.S.K., et al. (2003) Comprehensive proteomic profiling identifies serum preteomic signatures for detection of hepatocellular carcinoma and its subtypes. Clin. Chem. 49:752–760.PubMedCrossRefGoogle Scholar
  5. 5.
    Poon, T.C.W., Chan, K.C.A., Ng, P.C., Chiu, R.W.K., Ang, I.L., Tong, Y.K., et al. (2004) Serial analysis of plasma proteomic signatures in pediatric patients with severe acute respiratory syndrome and correlation with viral load. Clin. Chem. 50:1452–1455.PubMedCrossRefGoogle Scholar
  6. 6.
    Poon, T.C.W., Hui, A.Y., Chan, H.L.Y., Ang, I.L., Chow, S.M., Wong, N., et al. (2005) Prediction of liver fibrosis and cirrhosis in chronic Hepatitis B Infection by serum proteomic Fingerprinting: a pilot study. Clin Chem. in press.Google Scholar
  7. 7.
    Cho, W.C., Yipm, T.T., Yip, C., Yip, V., Thulasiraman, V., Ngan, R.K.C., et al. (2004) Identification of serum amyloid a protein as a potentially useful biomarker to monitor relapse of nasopharyngeal cancer by serum proteomic profiling. Clin. Cancer Res. 10:43–52.PubMedCrossRefGoogle Scholar
  8. 8.
    Xiao, Z., Luke, B.T., Izmirlian, G., Umar, A., Lynch, P.M., Phillips, R.K., et al. (2004) Serum proteomic profiles suggest celecoxibmodulated targets and response predictors. Cancer Res. 64:2904–2909.PubMedCrossRefGoogle Scholar
  9. 9.
    Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, G.J. (1984) Classification and regression trees. In The Wadsworth Statistics/Probability Series. (Bickel, P., Cleveland, W., and Dudley, R., eds.), Belmont: Wadsworth International Group.Google Scholar
  10. 10.
    Poon, T.C.W., Chan, A.T.C., Zee, B., Ho, S.K.W., Mok, T.S.K., Leung, T.W.T., et al. (2001) Application of classification tree and neural network algorithm to the identification of serological liver marker profiles in the diagnosis of hepatocellular carcinoma. Oncology 61:275–283.PubMedCrossRefGoogle Scholar
  11. 11.
    Markey, M.K., Tourassi, G.D., and Floyd Jr, C.E. (2003) Decision tree classification of proteins identified by mass spectrometry of blood serum samples from people with and without lung cancer. Proteomics 3:1678–1679.PubMedCrossRefGoogle Scholar
  12. 12.
    Chan, A.T.C., Teo, P.M.L., Nagan, R.K., Leung, T.W., Lau, W.H., Zee, B., et al. (2002) Concurrent chemotherapy-radiotherapy compared with radiotherapy alone in locaregionally advanced nasopharyngeal carcinoma: progression free survival analysis of a phase III randomized trial. J. Clin. Oncol. 20:2038–2044.PubMedCrossRefGoogle Scholar
  13. 13.
    Radmacher, M.D., McShane, L.M., and Simon, R. (2002) A paradigm for class prediction using gene expression profiles. J. Comput. Biol. 9:505–511.PubMedCrossRefGoogle Scholar
  14. 14.
    Al-Sarraf, M., LeBlanc, M., Giri, P.G. Fu, K.K., Cooper, J., Vuong, T., et al. (1998) Chemoradiotherapy versus radiotherapy in patients with advanced nasopharyngeal cancer: phase III randomized intergroup study 0099. J. Clin. Oncol. 16:1310–1317.PubMedGoogle Scholar
  15. 15.
    Chan, A.T.C., Lo, Y.M.D., Zee, B., Chan, L.Y.S., Ma, B.B.Y., Leung, S.F., et al. (2002) Plasma Epstein-Barr virus DNA and residual disease after radiotherary after radiotherapy for undifferentiated carcinoma. J. Natl. Cancer. Inst. 94:1614–1619.PubMedGoogle Scholar
  16. 16.
    Diamandis, E.P. (2003) Proteomic patterns in biological fluids: do they represent the future of diagnostics? Clin. Chem. 49:1272–1275.PubMedCrossRefGoogle Scholar
  17. 17.
    Diamandis, E.P. (2004) Analysis of serum proteomic patterns for early cancer diagnosis: drawing attention to potential problems. J. Natl. Cancer Inst. 96:353–256.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Terence C. W. Poon
    • 1
  • Shuk Man Chow
    • 1
  • Brigette B. Y. Ma
    • 1
  • Edwin P. Hui
    • 1
  • Anthony T. C. Chan
    • 1
  1. 1.Department of Clinical OncologyThe Chinese University of Hong Kong, The Prince of Wales HospitalShatin, N. T.Hong Kong SAR, China

Personalised recommendations