Cell Biochemistry and Biophysics

, Volume 44, Issue 3, pp 463–474 | Cite as

CGI-55 interacts with nuclear proteins and co-localizes to p80-coilin positive-coiled bodies in the nucleus

  • Taila A. Lemos
  • Jörg Kobarg
Original Article


The human protein CGI-55 has been described as a chromo-helicase-DNA-binding domain protein (CHD)-3 interacting protein and was also found to interact with the 3′-region of the plasminogen activator inhibitor (PAI)-1 mRNA. Here, we used CGI-55 as a “bait” in a yeast two-hybrid screen and identified eight interacting proteins: Dax, Topoisomerase I binding RS (Topors), HPC2, UBA2, TDG, and protein inhibitor of activated STAT (signal transducer and activator of transcription) (PIAS)-1,-3, and-y. These proteins are either structurally or functionally associated with promyelocytic leukemia nuclear bodies (PML-NBs), protein sumoylation, or the regulation of transcription. The interactions of CGI-55 with Daxx, Topors, PIASy, and UBA2 were confirmed by in vivo colocalization experiments in HeLa cells, by using green (GFP) and red fluorescence fusion proteins. A mapping study of the CGI-55 binding site for these proteins revealed three distinct patterns of interaction. The fact that CGI-55-GFP has been localized in cytoplasm and nucleus in a dotted manner, and its interaction with proteins associated with PML-NBs, suggested that CGI-55 might be associated with nuclear bodies. Although Daxx and Topors co-localized with promyelocytic leukemia protein (PML), CGI-55 itself as well as PIASy and UBA2 showed only little co-localization with PML. However, we observed that CGI-55 localizes to the nucleolus and co-localizes with p80-coilin positive nuclear-coiled bodies.

Index Entries

PML-NBs coiled-bodies Cajal bodies protein-protein interaction two-hybrid domain mapping immunolocalization p80-coilin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kobarg, J., Schnittger, S., Fonatsch, C., et al. (1997) Characterization, mapping and partial cDNA sequence of the 57-kDa intracellular Ki-1 antigen. Exp. Clin. Immunogenet. 14, 273–280.PubMedGoogle Scholar
  2. 2.
    Lemos, T. A., Passos, D. O., Nery, F. C., and Kobarg, J. (2003) Characterization of a new family of proteins that interact with the C-terminal region of the chromatin-remodeling factor CHD-3. FEBS Lett. 533, 14–20.PubMedCrossRefGoogle Scholar
  3. 3.
    Heaton, J. H., Dlakic, W. M., Dlakic, M., and Gelehrter, T. D. (2001) Identification and cDNA cloning of a novel RNA-binding protein that interacts with the cyclic nucleotide-responsive sequence in the type-1 plasminogen activator inhibitor mRNA. J. Biol. Chem. 276, 3341–3347.PubMedCrossRefGoogle Scholar
  4. 4.
    Huang, L., Grammatikakis, N., Yoneda, M., Banerjee, S. D., and Toole, B. P. (2000) Molecular characterization of a novel intracellular hyaluronan-binding protein. J. Biol. Chem. 275, 29,829–29,839.Google Scholar
  5. 5.
    Nery, F. C., Passos, D. O., Garcia, V. S., and Kobarg, J. (2004) Ki-1/57 interacts with RACK1 and is a substrate for PMA activated PKC. J. Biol. Chem. 279, 11,444–11,455.CrossRefGoogle Scholar
  6. 6.
    Ozaki, T., Watanabe, K.-I., Nakagawa, T., Miyazaki, K., Takahashi, M., and Nakagawara, A. (2003) Function of p73, not of p53, is inhibited by the physical interaction with RACK1 and its inhibitory effect is counteracted by pRB. Oncogene 22, 3231–3242.PubMedCrossRefGoogle Scholar
  7. 7.
    Matera, A. G. (1999) Nuclear bodies: multifaceted subdomains of the interchromatin space. Trends Cell Biol. 9, 302–309.PubMedCrossRefGoogle Scholar
  8. 8.
    Andrade, L. E. C., Tan, E. M., and Chan, E. K. L. (1993) Immunocytochemical analysis of the coiled body in the cell cycle and during cell proliferation. Proc. Natl. Acad. Sci. U.S.A. 99, 1947–1951.CrossRefGoogle Scholar
  9. 9.
    Ogg, S. C., and Lamond, A. I. (2002) Cajal bodies and coilin-moving towards function. J. Cell Biol. 14, 17–21.CrossRefGoogle Scholar
  10. 10.
    Zhong, S., Salomoni, P., and Pandolfi, P. (2000) The transcriptional role of PML and the nuclear body. Nat. Cell Biol. 2, E85-E90.PubMedCrossRefGoogle Scholar
  11. 11.
    Rasheed, Z. A., Saleem, A., Ravee, Y., Pandolfi, P. P., and Rubin, E. H. (2002) The topoisomerase I-binding RING protein, topors, is associated with promyelocytic leukemia nuclear bodies. Exp. Cell. Res. 277, 152–160.PubMedCrossRefGoogle Scholar
  12. 12.
    Salomoni, P. and Pandolfi, P. P. (2002) The role of PML in tumor suppression. Cell 108, 165–170.PubMedCrossRefGoogle Scholar
  13. 13.
    Everett, R. D., Lomonte, P., Sternsdorf, T., van Driel, R., and Orr, A. (1999) Cell cycle regulation of PML modification and ND10 composition. J. Cell Sci. 112, 4581–4588.PubMedGoogle Scholar
  14. 14.
    Zhong, S., Müller, S., Ronchetti, S., Freemont, P. S., Dejean, A., and Pandolfi, P. P. (2000) Role of SUMO-1-modified PML in nuclear body formation. Blood 95, 2748–2752.PubMedGoogle Scholar
  15. 15.
    Borden, K. L. (2002) Pondering the promyelocytic leukemia protein (PML) puzzle: possible functions from PML nuclear bodies. Mol. Cell. Biol. 22, 5259–5269.PubMedCrossRefGoogle Scholar
  16. 16.
    Sterndorf, T., Jensen, K., and Will, H. (1997) Evidence for covalent modification of the nuclear dot-associated proteins PML and SP100 by PIC1/SUMO1. J. Cell Biol. 139, 1621–1634.CrossRefGoogle Scholar
  17. 17.
    Ishov, A. M., Sotnikov, A. G., Negorev, D., et al. (1999) PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J. Cell Biol. 147, 221–234.PubMedCrossRefGoogle Scholar
  18. 18.
    Fields, S. and Song, O. (1989) A novel genetic system to detect protein-protein interactions. Nature 340, 245–246.PubMedCrossRefGoogle Scholar
  19. 19.
    Vojtek, A. B. and Hollenberg, S. M. (1995) Ras-Raf interaction: two-hybrid analysis. Methods Enzymol. 255, 331–342.PubMedCrossRefGoogle Scholar
  20. 20.
    Moraes, K. C., Quaresma, A. J., Maehnss, K., and Kobarg, J. (2003) Identification and characterization of proteins that selectively interact with isoforms of the mRNA binding protein AUF1 (hnRNP D). Biol. Chem. 384, 35–37.CrossRefGoogle Scholar
  21. 21.
    Schmidt, D. and Müller, S. (2002) Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc. Natl. Acad. Sci. U.S.A. 99, 2872–2877.PubMedCrossRefGoogle Scholar
  22. 22.
    Kotaja, N., Karvonen, U., Janne, O. A., and Palvimo, J. J. (2002) PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol Cell Biol. 22, 5222–5234.PubMedCrossRefGoogle Scholar
  23. 23.
    Müller, S., Matunis, M. J., and Dejean, A. (1998) Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J. 17, 61–70.PubMedCrossRefGoogle Scholar
  24. 24.
    Valdez, B. C., Henning, D., Perlaky, L., Busch, R. K., and Busch, H. (1997) Cloning and characterization of Gu/RH-II binding protein. Biochem. Biophys. Res. Commun. 234, 335–340.PubMedCrossRefGoogle Scholar
  25. 25.
    Miyauchi, Y., Yogosawa, S., Honda, R., Nishida, T., and Yasuda, H. (2002) Sumoylation of Mdm2 by protein inhibitor of activated STAT (PIAS) and RanBP2 enzymes. J. Biol. Chem. 277, 50,131–50,136.CrossRefGoogle Scholar
  26. 26.
    Haluska, P., Jr., Saleem, A., Rasheed, Z., et al. (1999) Interaction between human topoisomerase I and a novel RING-finger/arginine-serine protein. Nucleic Acids Res. 27, 2538–2544.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhou, R., Wen, H., and Ao, S. Z. (1999) Identification of a novel gene encoding a p53-associated protein. Gene 235, 93–101.PubMedCrossRefGoogle Scholar
  28. 28.
    Rechsteiner, M., Rogers, S. W. (1996) PEST sequences and regulation by proteolysis. Trends Biochem. Sci. 21, 267–271.PubMedCrossRefGoogle Scholar
  29. 29.
    Torii, S., Egan, D. A., Evans, R. A., and Reed, J. C. (1999) Human Daxx regulates Fas-induced apoptosis from nuclear PML oncogenic domains (PODs). EMBO J. 18, 6037–6049.PubMedCrossRefGoogle Scholar
  30. 30.
    Li, R., Pei, H., Watson, D. K., and Papas, T. S. (2000) EAP1/Daxx interacts with ETS1 and represses transcriptional activation of ETS1 target genes. Oncogene 19, 745–753.PubMedCrossRefGoogle Scholar
  31. 31.
    Ko, Y. G., Kang, Y. S., Park, H., et al. (2001) Apoptosis signal-regulating kinase 1 controls the proapoptotic function of death-associated protein (Daxx) in the cytoplasm. J. Biol. Chem. 276, 39,103–39,106.Google Scholar
  32. 32.
    Lin, D. Y., Lai, M. Z., Ann, D. K., and Shih, H. M. (2003) Promyelocytic leukemia protein (PML) functions as a glucocorticoid receptor co-activator by Sequestering Daxx to the PML oncogenic domains (PODs) to enhance its transactivation potential. J. Biol. Chem. 278, 15,958–15,965.Google Scholar
  33. 33.
    Shih, H. P., Hales, K. G., Pringle, J. R., and Peifer, M. (2002) Identification of septin-interacting proteins and characterization of the Smt3/SUMO-conjugation system in Drosophila. J. Cell Sci. 115, 1259–1271.PubMedGoogle Scholar
  34. 34.
    Chu, D., Kakazu, N., Gorrin-Rivas, M. J., et al. (2001) Cloning and characterization of LUN, a novel ring finger protein that is highly expressed in lung and specifically binds to a palindromic sequence. J. Biol. Chem. 276, 14,004–14,013.Google Scholar
  35. 35.
    Yang, X., Khosravi-Far, R., Chang, H. Y., and Baltimore, D. (1997) Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell 89, 1067–1076.PubMedCrossRefGoogle Scholar
  36. 36.
    Emelyanov, A. V., Kovac, C. R., Sepulveda, M. A., and Birshtein, B. K. (2002) The interaction of Pax5 (BSAP) with Daxx can result in transcriptional activation in B cells. J. Biol. Chem. 277, 11,156–11,164.CrossRefGoogle Scholar
  37. 37.
    Pluta, A. F., Earnshaw, W. C., and Goldberg, I. G. (1998) Interphase-specific association of intrinsic centromer protein CENP-C with Daxx, a death domain-binding protein implicated in Fas-mediated cell death. J. Cell. Sci. 111, 2029–2041.PubMedGoogle Scholar
  38. 38.
    Satijn, D. P., Olson, D. J., van der Vlag, J., et al. (1997) Interference with the expression of a novel human polycomb protein, hPc2, results in cellular transformation and apoptosis. Mol. Cell. Biol. 17, 6076–6086.PubMedGoogle Scholar
  39. 39.
    Liu, B., Liao, J., Rao, X., et al. (1998) Inhibition of Stat1-mediated gene activation by PIAS1. Proc. Natl. Acad. Sci. U.S.A. 95, 10,626–10,631.Google Scholar
  40. 40.
    Kahyo, T., Nishida, T., and Yasuda, H. (2001) Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol. Cell. 8, 713–718.PubMedCrossRefGoogle Scholar
  41. 41.
    Jackson, P. K. (2001) A new RING for SUMO: wrestling transcriptional responses into nuclear bodieswith PIAS family E3 SUMO ligases. Genes Dev. 15, 3053–3058.PubMedCrossRefGoogle Scholar
  42. 42.
    Desterro, J. M., Rodríguez, M. S., Kemp, G. D., and Hay, R. T. (1999) Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J. Biol. Chem. 274, 10,618–10,624.CrossRefGoogle Scholar
  43. 43.
    Gong, L., Li, B., Millas, S., and Yeh, E. T. (1999) Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex. FEBS Lett. 448, 185–189.PubMedCrossRefGoogle Scholar
  44. 44.
    Okuma, T., Honda, R., Ichikawa, G., Tsumagari, N., and Yasuda, H. (1999) In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2. Biochem. Biophys. Res. Commun. 254, 693–698.PubMedCrossRefGoogle Scholar
  45. 45.
    Rodriguez, M. S., Desterro, J. M., Lían, S., Midgley, C. A., Lane, D. P., and Hay, R. T. (1999) SUMO-1 modification activates the transcriptional response of p53. EMBO J. 18, 6455–6461.PubMedCrossRefGoogle Scholar
  46. 46.
    Neddermann, P., Gallinari, P., Lettieri, T., et al. (1996) Cloning and expression of human G/T mismatch-specific thymine-DNA glycosylase. J. Biol. Chem. 271, 12,767–12,774.Google Scholar
  47. 47.
    Lindahl, T. (1982) DNA repair enzymes. Annu. Rev. Biochem. 51, 61–87.PubMedCrossRefGoogle Scholar
  48. 48.
    Hardeland, U., Steinacher, R., Jiricny, J., and Schär, P. (2002) Modification of the human tymine-DNA-glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J. 21, 1456–1464.PubMedCrossRefGoogle Scholar
  49. 49.
    Takahashi, H., Hatakeyama, S., Saitoh, H., and Nakayama, K. I. (2005) Noncovalent SUMO-1 binding of thymine DNA glycosylase (TDG) is required for its SUMO-1 modification and colocalization with the promyelocytic leukemia protein (PML). J. Biol. Chem. 280, 5611–5621.PubMedCrossRefGoogle Scholar
  50. 50.
    Boddy, M. N., Howe, K., Etkin, L. D., Solomon, E., and Freemont, P. S. (1996) PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene 13, 971–982.PubMedGoogle Scholar
  51. 51.
    Long, J., Matsura, I., He, D., Wang, G., Shuai, K., and Liu, F. (2003) Repression of SMAD transcriptional activity by PIASy, an inhibitor of activated STAT. Proc. Natl. Acad. Sci. U.S.A. 100, 9791–9796.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  1. 1.Laboratório Nacional de Luz SíncrotronCentro de Biologia Molecular EstruturalCampinasBrazil
  2. 2.Departamento de Genética e Evolução, Instituto de BiologiaUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations