Cell Biochemistry and Biophysics

, Volume 44, Issue 3, pp 375–384 | Cite as

Molecular models of tryptophan synthase from Mycobacterium tuberculosis complexed with inhibitors

  • Marcio Vinicius Bertacine Dias
  • Fernanda Canduri
  • Nelson José Freitas da Silveira
  • Clarissa Melo Czekster
  • Luis Augusto Basso
  • Mário Sérgio Palma
  • Diógenes Santiago Santos
  • Walter Filgueira de AzevedoJr.
Original Article


The development of new therapies against infectious diseases is vital in developing countries. Among infectious diseases, tuberculosis is considered the leading cause of death. A target for development of new drugs is the tryptophan pathway. The last enzyme of this pathway, tryptophan synthase (TRPS), is responsible for conversion of the indole 3-glycerol phosphate into indol and the condensation of this molecule with serine-producting tryptophan. The present work describes the molecular models of TRPS from Mycobacterium tuberculosis (MtTRPS) complexed with six inhibitors, the indole 3-propanol phosphate and five arylthioalkyl-phosphonated analogs of substrate of the α-subunit. The molecular models of MtTRPS present good stereochemistry, and the binding of the inhibitors is favorable. Thus, the generated models can be used in the design of more specific drugs against tuberculosis and other infectious diseases.

Index Entries

Tryptophan synthase Mycobacterium tuberculosis molecular modeling drug design structural bioinformatics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Trouiller, P., Torreele, E., Olliaro, P., et al. (2001) Drugs for neglected diseases: a failure of the market and a public health failure? Trop. Med. Int. Health 6, 945–951.PubMedCrossRefGoogle Scholar
  2. 2.
    World Health Organization. Global Tuberculosis Control. WHO Report 2001. Geneva, Switzerland, WHO/CDS/TB/2001.287Google Scholar
  3. 3.
    Dosselaere, F. and Vanderleyden, J. (2001) A metabolic node in action: chorismate-utilizing enzymes in microorganisms. Crit. Rev. Microbiol. 27, 75–131.PubMedCrossRefGoogle Scholar
  4. 4.
    Roberts, F., Roberts, C. W., Johnson, J. J., et al. (1998) Evidence for the shikimate pathway in apicomplexan parasites. Nature 393, 801–805.PubMedCrossRefGoogle Scholar
  5. 5.
    Schonbrunn, E., Eschenburg, S., Shuttleworth, W. A., et al., (2001) Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc. Natl. Acad. Sci. U.S.A. 98, 1376–1380.PubMedCrossRefGoogle Scholar
  6. 6.
    Daves, G. M., Barrett-Bee, K. J. Jude, D. A., et al. (1994) (6S)-6-Fluoroshikimic acid, an antibacterial agent acting on the aromatic biosynthetic pathway. Antimicrob. Agents Chemother. 38, 403–406.Google Scholar
  7. 7.
    Finn, J., Langevine, C., Birk, I., Nicherson, K., and Rodaway, S. (1999) Rational herbicide design by inhibition of tryptophan biosynthesis. Bioorg. Med. Chem. Lett. 9, 2297–2302.PubMedCrossRefGoogle Scholar
  8. 8.
    Smith, D. A., Parish, T., Stoker, N. G., and Bancroft, G. J. (2001) Characterization of auxotrophic mutants of Mycobacterium tuberculosis and their potential as vaccine candidates. Infect. Immun. 69, 1142–1150.PubMedCrossRefGoogle Scholar
  9. 9.
    Hyde, C. C. and Miles, E. W. (1990) The tryptophan synthase multienzyme complex: exploring structure-function relationships with X-ray crystallography and mutagenesis. Biotechnology 8, 27–32.PubMedCrossRefGoogle Scholar
  10. 10.
    Pan, P., Woehl, E., and Dunn, M. F. (1997) Protein architecture, dynamics and allostery in trytophan synthase channeling. Trends Biochem. Sci. 22, 22–27.PubMedCrossRefGoogle Scholar
  11. 11.
    Weyand, M. and Schlichting, I. (1999) Crystal structure of wild-type tryptophan synthase complexed with the natural substrate indole-3-glycerol phosphate. Biochemistry 38, 16,469–16,480.CrossRefGoogle Scholar
  12. 12.
    Sachpatzidis, A., Dealwis, C., Lubetsky, J. B., Liang, P. H., Anderson, K. S., and Lolis, E. (1999) Crystallographic studies of phosphonate-based alpha-reaction transition-state analogues complexed to tryptophan synthase. Biochemistry 38, 12,665–12,674.CrossRefGoogle Scholar
  13. 13.
    Uchoa, H. B., Jorge, G. E., da Silveira, N. J. F., Camera, J. C., Jr., Canduri, F., and de Azevedo, W. F., Jr. (2004) Parmodel: a web server for automated comparative modeling of proteins. Biochem. Biophys. Res. Commun. 325, 1481–1486.PubMedCrossRefGoogle Scholar
  14. 14.
    Sali, A. and Blundell, T. L. (1993) Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815.PubMedCrossRefGoogle Scholar
  15. 15.
    Collaborative Computational Project No. 4 (1994) The CCP4 suite: program for protein crystallography. Acta Crystallogr. D 50, 760–763.CrossRefGoogle Scholar
  16. 16.
    Brünger, A. T. (1992) X-PLOR version 3.1: a system for crystallography and NMR. Yale University Press, New Haven, CT.Google Scholar
  17. 17.
    Bowie, J. U., Luthy, R., and Eisenberg, D. (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253, 164–170.PubMedCrossRefGoogle Scholar
  18. 18.
    Luthy, R., Bowie, J., and Eisenberg D. (1992) Assessment of protein models with three-dimensional profiles. Nature 356, 83–85.PubMedCrossRefGoogle Scholar
  19. 19.
    Wang, R., Liu, L., Lai, L., and Tang, Y. (1998) SCORE: a new empirical method for estimating the binding affinity of a protein-ligand complex. J. Mol. Model. 4, 379–394.CrossRefGoogle Scholar
  20. 20.
    Hyde, C. C., Ahmed, S. A., Padlan, E. A., Miles, E. W., and Davies, D. R. (1988) Three-dimensional structure of the tryptophan synthase α2β2 multienzyme complex from Salmonella typhimurium. J. Biol. Chem. 263, 17,857–17,871.Google Scholar
  21. 21.
    Banner, D. W., Bloomer, A. C., Petsko, G. A., et al. (1975) Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 Å resolution using amino acid sequence data. Nature 255, 609–614.PubMedCrossRefGoogle Scholar
  22. 22.
    Rhee, S., Miles, E. W., Mozzarelli, A., and Davies, D. R. (1998) Cryocrystallography and microspectrophotometry of a mutant (alpha D60N) tryptophan synthase alpha 2 beta 2 complex reveals allosteric roles of alpha Asp60. Biochemistry 37, 10,653–10,659.CrossRefGoogle Scholar
  23. 23.
    De Azevedo, W. F., Jr., Mueller-Dieckmann, H. J., Schulze-Gahmen, U., Worland, P. J., Sausville, E., and Kim, S. H. (1996) Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase. Proc. Natl. Acad. Sci. U.S.A. 93, 2735–2740.PubMedCrossRefGoogle Scholar
  24. 24.
    De Azevedo, W. F., Jr., Canduri, F., Dos Santos, D. M., et al. (2003) Structural basis for inhibition of human PNP by immucillin-H. Biochem. Biophys. Res. Commun. 309, 922–927.CrossRefGoogle Scholar
  25. 25.
    Pereira, J. H., Canduri, F., de Oliveira, J. S., et al. (2003) Structural bioinformatics study of EPSP synthase from Mycobacterium tuberculosis. Biochem. Biophys. Res. Commun. 312, 608–614.PubMedCrossRefGoogle Scholar
  26. 26.
    Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.PubMedCrossRefGoogle Scholar
  27. 27.
    Koradi, R., Billeter, M., and Wüthrich, K. (1996) MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Marcio Vinicius Bertacine Dias
    • 1
  • Fernanda Canduri
    • 2
  • Nelson José Freitas da Silveira
    • 1
  • Clarissa Melo Czekster
    • 3
  • Luis Augusto Basso
    • 4
  • Mário Sérgio Palma
    • 5
  • Diógenes Santiago Santos
    • 6
  • Walter Filgueira de AzevedoJr.
    • 4
  1. 1.Programa de Pós-Graduação em Biofísica Molecular-Departamento de FísicaUNESPSão José do Rio PretoBrazil
  2. 2.Departamento de Morfofisiologia-CCBS-UFMSCampo Grande-MSBrazil
  3. 3.Rede Brasileira de Pesquisas em Tuberculose, Grupo de Microbiologia Molecular e Functional, Centro de BiotecnologiaUFRGSPorto Alegre-RSBrazil
  4. 4.Faculdade de Biociências-PUCRSPorto Alegre-RSBrazil
  5. 5.Laboratory of Structural Biology and Zoochemistry, CEIS/Department of Biology, Institute of BiosciencesUNESPRio ClaroBrazil
  6. 6.Centro de Pesquisas em Biologia Molecular e Funcional/PUCRSPorto AlegreBrazil

Personalised recommendations